• Title/Summary/Keyword: Breakdown strength

Search Result 522, Processing Time 0.027 seconds

A study on DC breakdown strength due to variation of specimen shape of epoxy/SiO$_{2}$ compound material treated with silane coupling agent

  • 김명호;김재환;김경환;박찬옥;손인환;박재준
    • Electrical & Electronic Materials
    • /
    • v.5 no.4
    • /
    • pp.393-399
    • /
    • 1992
  • In order to increase the coupling strength between bisphenol-A type epoxy resin and filler SiO$_{2}$ it was treated to filler with silane coupling agent[KBM-603]. To observe how silane coupling agent effects on dielectric breakdown strength of Epoxy/SiO$_{2}$ compound material, specimens of eight type were made like following. (A-1, A-2), (B-1, B-2), (C-1, C-2), (D-1, D-2) (see 2-2. Specimen) Specimen treated with silane coupling agent had always bigger dielectric breakdown strength than non-treated specimen. Under the influence of silane coupling agent, increment ratio of dielectric breakdown strength at specimen manufactured by hand drill was very bigger than that of specimen inserted spherical electrode. Therefore, as the specimen shape was varied, it was studied on effect that silane coupling agent affects on dielectric breakdown strength of Epoxy/SiO$_{2}$ compound material.

  • PDF

Effect of Nanosilica on the Mechanical Properties and AC Electrical Breakdown Strength of Epoxy/Microsilica/Nanosilica Composite

  • Park, Jae-Jun
    • Transactions on Electrical and Electronic Materials
    • /
    • v.13 no.6
    • /
    • pp.301-304
    • /
    • 2012
  • Epoxy/microsilica (65 phr)/nanosilica (0~5 phr) composites (EMNC) were prepared in order to develop a high-voltage insulation material, where phr means parts per hundred relative to the epoxy oligomer. Tensile and flexural tests of the composites were carried out, and the AC electrical breakdown strength was measured, after which all the data were estimated by Weibull statistical analysis. As the nanosilica content increased, the tensile strength increased, and the highest value was 117.7 MPa in the EMNC system with 3 phr nanosilica, which was ca. 10% higher than that of the system without nanosilica. The value then decreased after 3 phr. The flexural strength and AC electrical breakdown strength showed the same tendencies as the tensile strength. The highest value of the flexural strength was 184.6 MPa in the EMNC system with 3 phr of nanosilica, which was ca. 15% higher than that of the system without nanosilica. The strongest value of the AC electrical breakdown strength was 79.0 kV/0.5 mm in the EMNC system with 3 phr of nanosilica, which was ca. 34% higher than that of the system without nanosilica.

Adhesion and Electrical Performance by Roughness on Semiconductive-Insulation Interface Layer of Silicone Rubber (거칠기에 따른 반도전-절연 계면층에서 접착특성과 절연성능)

  • Lee, Ki-Taek;Hwang, Sun-Mook;Hong, Joo-Il;Huh, Chang-Su
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2004.07a
    • /
    • pp.78-81
    • /
    • 2004
  • In this paper, the effect of adhesion properties of semiconductive-insulating interface layer of silicone rubber on electrical properties was investigated. Surface structure and adhesion of semiconductive silicon rubber by surface asperity was obtained from SEM and T-peel test. In addition, ac breakdown test was carried out for elucidating the change of electrical property by roughness treatment. From the results, Adhesive strength of semiconductive-insulation interface was increased with surface asperity. Dielectric breakdown strength by surface asperity decreased than initial Specimen, but increased from Sand Paper #1200. According to the adhesional strength data unevenness and void formed on the silicone rubber interface expand the surface area and result in improvement of adhesion. Before treatment Sand Paper #1200, dielectric breakdown strength was decreased by unevenness and void which are causing to have electric field mitigation small. After the treatment, the effect of adhesion increased dielectric breakdown strength. It is found that ac dielectric breakdown strength was increased with improving the adhesion between the semiconductive and insulating interface.

  • PDF

AC Electrical Breakdown Characteristics of an Epoxy/Mica Composite

  • Park, Jae-Jun
    • Transactions on Electrical and Electronic Materials
    • /
    • v.13 no.4
    • /
    • pp.200-203
    • /
    • 2012
  • Epoxy/mica composite was synthesized, in order to use it as an impregnation resin in a vacuum pressure impregnation (VPI) process, for manufacturing a high voltage rotary machine. The average particle size of the mica was 5~7 ${\mu}m$ and its content was 0, 20, 30 and 40 wt%. A plasticizer or a low molecular aliphatic epoxy was also used, to decrease the viscosity of the composite. The AC electrical breakdown strength was estimated in sphere-to-sphere electrodes, and the electrical breakdown data were estimated by Weibull statistical analysis. The electrical breakdown strength became higher with the addition of mica; and that of the system with 20 wt% mica was highest. The electrical breakdown strength of the system with an aliphatic epoxy was higher than that of the system with a, plasticizer.

A Study on the Properties of Epoxy used for Sensor due to Variation of Fabrication Conditions (센서용 에폭시 수지의 제조조건 변화에 따른 특성)

  • Shin, C.G.;Sung, N.J.;Kim, S.J.;Wang, J.B.
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2007.06a
    • /
    • pp.509-510
    • /
    • 2007
  • The Breakdown properties of epoxy composites are used for transformers and sensor, which has been studied. As a result, From the measurements of breakdown voltage, the more hardener is increased the stronger breakdown strength at low temperature because the ester of hardener is increased. Breakdown strength at the high temperature is decreased because the temperature at $110^{\circ}C$ is near at $T_g$. When the filler is added, between epoxy and silica is formed interface. Therefore the charge is accumulated in it, and the electric field is concentrated, and breakdown strength is decreased than non-filled specimens. In the case of specimens, the treated with silane, the breakdown strength becomes much higher since this is suggested that silane coupling agent has been improved chemical bonding in the interfaces and has been relaxed the electric filed concentration.

  • PDF

Study of Partial Discharge Influence on AC Breakdown Strength of Laminated Ploypropylene Paper(PPLP) at Liquid Nitrogen (액체 질소에서의 반합성지 AC 파괴 강도에 미치는 부분 방전의 영향)

  • 안드레프;김수연;이인호;김도운;신두성;김상현
    • Progress in Superconductivity and Cryogenics
    • /
    • v.4 no.1
    • /
    • pp.105-109
    • /
    • 2002
  • The short-term AC breakdown strength of laminated polypropylene insulating Paper (PPLP) has been studied for cold dielectric of high temperature superconductivity power cables. The design and operating conditions of the electrode system for studying of short-term breakdown strength of one-layer and multi-layer PPLP samples are discussed in liquid nitrogen(LN2) state. The influence of various operating factors (geometry and dimension of electrodes, speed of tested voltage, thickness of test sample) on the value of short-term AC breakdown strength at cryogenic temperature has been established.

Electrical Insulation Breakdown Strength in Epoxy/Spherical Alumina Composites for HV Insulation

  • Park, Jae-Jun
    • Transactions on Electrical and Electronic Materials
    • /
    • v.14 no.2
    • /
    • pp.105-109
    • /
    • 2013
  • In order to develop high voltage (HV) insulation materials, epoxy/spherical alumina composites with two different particle sizes (in ${\mu}m$) were prepared and a dynamic mechanical analysis (DMA) and electrical insulation breakdown strength test were carried out in sphere-sphere electrodes and the data were estimated using Weibull statistical analysis. Alumina content varied from 50 to 70 wt%. The electrical insulation breakdown strength for epoxy/alumina (50 wt%) was 44.0 kV/1 mm and this value decreased with increasing alumina content. The effects of insulation thickness and alumina particle size on the insulation breakdown strength were also studied. The insulation thickness varied from 1 mm to 3 mm, and the particle sizes were 7.3 or $40.3{\mu}m$.

Enhancing Breakdown Strength and Energy Storage Efficiency of Glass-Pb(Zr,Ti)O3 Composite Film (유리-PZT 혼합 후막의 절연 파괴 전압 및 에너지 저장 효율 향상)

  • Kim, Samjeong;Lim, Ji-Ho;Jeong, Dae-Yong
    • Korean Journal of Materials Research
    • /
    • v.31 no.10
    • /
    • pp.546-551
    • /
    • 2021
  • To improve ferroelectric properties of PZT, many studies have attempted to fabricate dense PZT films. The AD process has an advantage for forming dense ceramic films at room temperature without any additional heat treatment in low vacuum. Thick films coated by AD have a higher dielectric breakdown strength due to their higher density than those coated using conventional methods. To improve the breakdown strength, glass (SiO2-Al2O3-Y2O3, SAY) is mixed with PZT powder at various volume ratios (PZT-xSAY, x = 0, 5, 10 vol%) and coating films are produced on silicon wafers by AD method. Depending on the ratio of PZT to glass, dielectric breakdown strength and energy storage efficiency characteristics change. Mechanical impact in the AD process makes the SAY glass more viscous and fills the film densely. Compared to pure PZT film, PZT-SAY film shows an 87.5 % increase in breakdown strength and a 35.3 % increase in energy storage efficiency.

Influence of electrode surface conditions on breakdown field strength in pressurized $SF_{6}$ (고기압 $SF_{6}$가스에서 전극표면 상태가 절열파괴 강도에 미치는 영향)

  • 이동인
    • 전기의세계
    • /
    • v.30 no.3
    • /
    • pp.172-176
    • /
    • 1981
  • The reduction in the breakdown field strength due to electrode surface roughness was calculated by applying the streamer breakdown criterion and the surface roughness factor, and measurements of static breakdown voltage for a gap with an artificial protrusion were made under the uniform field at pressures up to 4 bar in pressurized $SF_{6}$. The effect of polarity of highly stressed electrode on the breakdown field strength was also investigated. The measurements have shown that the measured breakdown levels for a protrusion located on the cathode agree with those calculated and the values measured with an identical anode protrusion are substantially higher and more scattered. This may be explained if it assumed that a high rate of production of initiatory electrons is maintained at the tip of a cathode protrusion by field emission. In practical point of view, the breakdown levels in pressurized $SF_{6}$ can be bereliably estimated from the values calculated.

  • PDF

Evaluation of Insulating Reliability in Epoxy Composites by DC Dielectric Breakdown Properties (DC 절연파괴 특성을 이용한 Epoxy 복합체의 절연 신뢰도 평가)

  • 임중관;박용필;김정호
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2001.07a
    • /
    • pp.92-95
    • /
    • 2001
  • The dielectric breakdown of epoxy composites used for transformers was experimented and then its data were simulated by Weibull distribution probability. First of all, speaking of dielectric breakdown properties, the more hardener increased the stronger breakdown strength at low temperature because of cross-linked density by the virtue of ester radical. The breakdown strength of specimens with filler was lower than it of non-filler specimens because it is believed that the adding filler forms interface and charge is accumulated in it, therefore the molecular motility is raised and the electric field is concentrated. In the case of filled specimens with treating silane, the breakdown strength become much higher Finally, from the analysis of weibull distribution, it was confirmed that as the allowed breakdown probability was given by 0.1[%], the applied field value needed to be under 21.5 [Mv/cm].

  • PDF