Browse > Article
http://dx.doi.org/10.3740/MRSK.2021.31.10.546

Enhancing Breakdown Strength and Energy Storage Efficiency of Glass-Pb(Zr,Ti)O3 Composite Film  

Kim, Samjeong (Department of Materials Science and Engineering, Inha University)
Lim, Ji-Ho (Department of Materials Science and Engineering, Inha University)
Jeong, Dae-Yong (Department of Materials Science and Engineering, Inha University)
Publication Information
Korean Journal of Materials Research / v.31, no.10, 2021 , pp. 546-551 More about this Journal
Abstract
To improve ferroelectric properties of PZT, many studies have attempted to fabricate dense PZT films. The AD process has an advantage for forming dense ceramic films at room temperature without any additional heat treatment in low vacuum. Thick films coated by AD have a higher dielectric breakdown strength due to their higher density than those coated using conventional methods. To improve the breakdown strength, glass (SiO2-Al2O3-Y2O3, SAY) is mixed with PZT powder at various volume ratios (PZT-xSAY, x = 0, 5, 10 vol%) and coating films are produced on silicon wafers by AD method. Depending on the ratio of PZT to glass, dielectric breakdown strength and energy storage efficiency characteristics change. Mechanical impact in the AD process makes the SAY glass more viscous and fills the film densely. Compared to pure PZT film, PZT-SAY film shows an 87.5 % increase in breakdown strength and a 35.3 % increase in energy storage efficiency.
Keywords
aerosol deposition; $Pb(Zr,Ti)O_3$; glass; breakdown strength; energy storage efficiency;
Citations & Related Records
연도 인용수 순위
  • Reference
1 J. H. Lim, C. K. Park, S. H. Cho, J. W. Kim, H. S. Kim and D. Y. Jeong, Ceram. Int., 44, 10829 (2018).   DOI
2 L. Q. Cheng, Z. Xu, C. Zhao, H. C. Thong, Z. Y. Cen, W. Lu, Y. Lan and K. Wang, RSC Adv., 8, 35594 (2018).   DOI
3 J. H. Lim, C. K. Park, Y. S. Lee, Y. M. Kong, K. H. Kang, H. S. Kim and D. Y. Jeong, Korean J. Met. Mater., 54, 164 (2016).   DOI
4 C. K. Campbell, J. D. V. Wyk and R. Chen, IEEE Trans. Compon. Packag. Technol., 25, 211 (2002).   DOI
5 M. J. Pascual, A. Duran and M. O. Prado, Phys. Chem. Glasses, 46, 512 (2005).
6 M. Dinulovic and B. Rasuo, FME Transactions., 37, 117 (2009).
7 T. Li, H. Segawa and N. Ohashi, Ceram. Int., 44, 13004 (2018).   DOI
8 X. Su, B. C. Riggs, M. Tomozawa, J. K. Nelson and D. B. Chrisey, J. Mater. Chem. A, 2, 18087 (2014).   DOI
9 X. Su, M. Tomozawa, J. K. Nelson and D. B. Chrisey, J. Mater. Sci.: Mater. Electron., 24, 2135 (2013).   DOI
10 H. I. Hsiang, C. S. Hsi, C. C. Huang and S. L. Fu, J. Alloys Compd., 459, 307 (2008).   DOI
11 S. B. Kang, M. G. Choi, D. Y. Jeong, Y. M. Kong and J. Ryu, IEEE Trans. Dielectr. Electr. Insul., 22, 1477 (2015).   DOI
12 B. X. Du and B. Cui, IEEE Trans. Dielectr. Electr. Insul., 23, 2116 (2016).   DOI
13 S. Samal, J. Lee, D. Y. Jeong and H. Kim, Thermochim. Acta, 604, 1 (2015).   DOI
14 S. Choi, D. Y. Jeong and H. Kim, Adv. Appl. Ceram., 117, 328 (2018).   DOI
15 P. Khaenamkaew, S. Muensit, I. K. Bdikin and A. L. Kholkin, Mater. Chem. Phys., 102, 159 (2007).   DOI
16 X. Hao, J. Zhai and X. Yao, J. Am. Ceram. Soc., 92, 1133 (2009).   DOI
17 E. Haily, L. Bih, A. E. Bouari, A. Lahmar, M. Elmarssi and B. Manoun, Mater. Chem. Phys., 241, 122434 (2020).   DOI
18 B. Ma, D. K. Kwon, M. Narayanan and U. B. Balachandran, Mater. Lett., 62, 3573 (2008).   DOI
19 R. A. Dorey and R. W. Whatmore, J. Electroceram., 12, 19 (2004).   DOI