• Title/Summary/Keyword: Breakdowm Voltage

Search Result 2, Processing Time 0.022 seconds

A Study on an Improvement of the Ignitability Using the High Frequency Ignition System (고주파점화장치를 사용한 착화성 향상에 관한 연구)

  • Lee, Jung-Sun;Gang, Byeong-Mu;Ha, Jong-Ryul
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.20 no.1
    • /
    • pp.359-368
    • /
    • 1996
  • For fuel economy and pollutant reduction, the interests in lean burn has increased recently. The purpose of this research is to develop a High Frequency Ignition System (HIS) that can make powerful ignition. We studied relations between performance of HIS and probability of inflammation under various ignition conditions. It is concluded that the portion of capacitance energy to the total energy is comparatively larger and that the optimum spark interval and spark duration are dependent upon conditions of Constant Volume Combustion Chamber.

Improved Breakdown Voltage Characteristics of $In_{0.5}Ga_{0.5}P/In_{0.22}Ga_{0.78}As/GaAs$ p-HEMT with an Oxidized GaAs Gate

  • I-H. Kang;Lee, J-W.;S-J. Kang;S-J. Jo;S-K. In;H-J. Song;Kim, J-H.;J-I. Song
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.3 no.2
    • /
    • pp.63-68
    • /
    • 2003
  • The DC and RF characteristics of $In_{0.5}Ga_{0.5}P/In_{0.22}Ga_{0.78}As/GaAs$ p-HEMTs with a gate oxide layer of various thicknesses ($50{\;}{\AA},{\;}300{\;}{\AA}$) were investigated and compared with those of a Schottky-gate p-HEMT without the gate oxide layer. A prominent improvement in the breakdown voltage characteristics were observed for a p-HEMT having a gate oxide layer, which was implemented by using a liquid phase oxidation technique. The on-state breakdown voltage of the p-HEMT having the oxide layer of $50{\;}{\AA}$was ~2.3 times greater than that of a Schottky-gate p-HEMT. However, the p-HEMT having the gate oxide layer of $300{\;}{\AA}$ suffered from a poor gate-control capability due to the drain induced barrier lowering (DIBL) resulting from the thick gate oxide inspite of the lower gate leakage current and the higher on-state breakdown voltage. The results for a primitive p-HEMT having the gate oxide layer without any optimization of the structure and the process indicate the potential of p-HEMT having the gate oxide layer for high-power applications.