• Title/Summary/Keyword: Break-In

Search Result 3,247, Processing Time 0.034 seconds

Effects of a Crosslinking Agent and a Compatibilizer on the Mechanical and Rheological Properties of Waste PP and Waste Ground Rubber Tire Composites

  • Kim, Donghak;Kim, Seonggil;Lee, Minji;Lee, Chanhee;Lee, Horyong;Lee, Seongwoo;Lee, Suhyeon;Moon, Myeongsuk;Bang, Daesuk
    • Elastomers and Composites
    • /
    • v.50 no.1
    • /
    • pp.24-29
    • /
    • 2015
  • In this study, we investigated the effects of a crosslinking agent and a compatibilizer on the mechanical and rheological properties of waste PP and waste ground rubber tire (WGRT) composites. In order to simulate a commercial TPV, the component of waste PP and WGRT was fixed at 30 and 70 wt%, respectively. With the simple addition of SEBS-g-MA into the waste PP/WGRT composites, the tensile strength of the composite was decreased, whereas both the elongation at break and impact strength were significantly increased because of rubbery characteristics of SEBS-g-MA. In order to further improve the properties of the composites, the waste PP/WGRT/SEBS-g-MA composites was revulcanized with dicumyl peroxide (DCP). As expected, mechanical properties of the revulcanized composites was generally improved. Especially, with 15 and 1 phr of SEBS-g-MA and DCP, elongation at break was highest value of about 183% because of the recross-linking of WGRT without chain scission of the main chain. It was found that complex viscosity of the revulcanized composite increased which might verify further vulcanization of the WGRT.

Modeling of a Small Group Scale TMR Plant for Beef Cattle and Dairy Farm in Korea(II) - Performance Test and Cost Analysis of the Model Plant - (한우 및 낙농 단지용 소형 TMR 플랜트 모델 개발(II) - 모델의 성능시험 및 경제성분석 -)

  • Ha, Yu-Shin;Hong, Dong-Hyuck;Park, Kyung-Kyoo
    • Journal of Biosystems Engineering
    • /
    • v.35 no.2
    • /
    • pp.91-99
    • /
    • 2010
  • A Model of small scale total mixed rations(TMR) plant which can be utilized round bales was developed, tested and analyzed in this study. This study consist of two parts. One is development of a small scale TMR plant model which was already reported at the previous paper. This is the second part of the study. For the study, a series of tests of the model plant were performed and its costs was analyzed. Also, the break-even point of the model plant by comparing with market price of commercial TMR feed was determined. Results of the research are summarized as follows ; As the results of mixing test, the average coefficient of variation(CV) value for mixing of the feed was 13.0 % at the gate of the mixer. The production cost was estimated as 8,298 won/head for dairy cattle farm and 2,495 won/head for beef cattle farm, when producing 8 batch a day. Also, it is recommended to utilize the model plant when farm size is over 79 heads for dairy cattle farm and 113 heads for beef cattle farm. As an overall conclusion, the model plant designed for farm size TMR feed mill will be very useful model for both beef cattle and dairy farms in Korea. Also it is expected that the capital investment for the model plant can be recovered with 8 months compare with purchasing commercial TMR feed if the model plant feeds 1,000 beef cattle approximately.

Evaluation of Probabilistic Fracture Mechanics for Reactor Pressure Vessel under SBLOCA (소규모 냉각재 상실사고하의 원자로 압력용기에 대한 확률론적 파괴역학 평가)

  • Kim, Jong Wook;Lee, Gyu Mahn;Kim, Tae Wan
    • Transactions of the Korean Society of Pressure Vessels and Piping
    • /
    • v.4 no.2
    • /
    • pp.13-19
    • /
    • 2008
  • In order to predict a remaining life of a plant, it is necessary to select the components that are critical to the plant life. The remaining life of those components shall be evaluated by considering the aging effect of materials used as well as numerous factors. However, when evaluating reliability of nuclear structural components, some problems are quite formidable because of lack of information such as operating history, material property change and uncertainty in damage models. Accordingly, if structural integrity and safety are evaluated by the deterministic fracture mechanics approach, it is expected that the results obtained are too conservative to perform a rational evaluation of plant life. The probabilistic fracture mechanics approaches are regarded as appropriate methods to rationally evaluate the plant life since they can consider various uncertainties such as sizes and shapes of cracks and degradation of material strength due to the aging effects. The objective of this study is to evaluate the structural integrity for a reactor pressure vessel under the small break loss of coolant accident by applying the deterministic and probabilistic fracture mechanics. The deterministic fracture mechanics analysis was performed using the three dimensional finite element model. The probabilistic integrity analysis was based on the Monte Carlo simulation. The selected random variables are the neutron fluence on the vessel inside surface, the content of copper, nickel, and phosphorus in the reactor pressure vessel material, and initial RTNDT.

  • PDF

Enrichment of Chromium(Ⅵ) by Macrorecticular DPC Resin (큰 그물 구조-DPC 수지에 의한 Cr(Ⅵ)의 농축)

  • In Hwa Woo;Tong Oh Seo;Kyu Ja Whang;Yong Keun Lee
    • Journal of the Korean Chemical Society
    • /
    • v.27 no.5
    • /
    • pp.345-352
    • /
    • 1983
  • Using a column of macrorecticular gel beads impregnated with alcohol solution of diphenylcarbarzide (DPC), the enrichment of Cr(Ⅵ) ion in 0.1M sulfuric acid was investigated. The column performance was compared with respect to the types of solid support such as Amberlite XAD and Diaion HP. Diaion HP-20 was found to be most suitable for this purpose. The break through point was increased when increasing the amount of DPC absorbed in the resin and the concentrated sample solution showed higher break through capacity than the dilute one. The extraction of Cr(Ⅵ) was not affected by the presence of 100 ppm Fe(Ⅲ) which amounted to ten times of 10 ppm Cr(Ⅵ) and the presence of other metal ions which amounted to 100 times of 10 ppm Cr(Ⅵ). Because the used gel particles were effectively regenerated with methanol, they were able to be used repeatedly.

  • PDF

ANALYSIS OF TMI-2 BENCHMARK PROBLEM USING MAAP4.03 CODE

  • Yoo, Jae-Sik;Suh, Kune-Yull
    • Nuclear Engineering and Technology
    • /
    • v.41 no.7
    • /
    • pp.945-952
    • /
    • 2009
  • The Three Mile Island Unit 2 (TMI-2) accident provides unique full scale data, thus providing opportunities to check the capability of codes to model overall plant behavior and to perform a spectrum of sensitivity and uncertainty calculations. As part of the TMI-2 analysis benchmark exercise sponsored by the Organization for Economic Cooperation and Development Nuclear Energy Agency (OECD NEA), several member countries are continuing to improve their system analysis codes using the TMI-2 data. The Republic of Korea joined this benchmark exercise in November 2005. Seoul National University has analyzed the TMI-2 accident as well as the currently proposed alternative scenario along with a sensitivity study using the Modular Accident Analysis Program Version 4.03 (MAAP4.03) code in collaboration with the Korea Hydro and Nuclear Power Company. Two input files are required to simulate the TMI-2 accident with MAAP4: the parameter file and an input deck. The user inputs various parameters, such as volumes or masses, for each component. The parameter file contains the information on TMI-2 relevant to the plant geometry, system performance, controls, and initial conditions used to perform these benchmark calculations. The input deck defines the operator actions and boundary conditions during the course of the accident. The TMI-2 accident analysis provided good estimates of the accident output data compared with the OECD TMI-2 standard reference. The alternative scenario has proposed the initial event as a loss of main feed water and a small break on the hot leg. Analysis is in progress along with a sensitivity study concerning the break size and elevation.

Flood risk estimation with scenario-based, coupled river-overland hydrodynamic modeling (시나리오 기반 하천-제내지 연계 통합수리해석에 의한 홍수위험도 산정)

  • Lee, Jae Young;Nam, Myeong Jun;Kwon, Hyun Han;Kim, Ki Young
    • Journal of Korea Water Resources Association
    • /
    • v.49 no.9
    • /
    • pp.773-787
    • /
    • 2016
  • A coupled river-overland hydrodynamic model was applied to estimate flood risk by a scenario-based approach. The study area is Seongseo Industrial Complex in Daegu which is located near Nakdong river and Geumho river. Inundation depth and velocity at each time were calculated by applying a coupled 1D/2D hydrodynamic model to the target area of interest. The 2D inundation analysis for river and overland domain was performed with the scenario-based approach that there are levee overflow against 100/200 year high quantile (97.5%) design flood and levee break against 100/200 year normal quantile (50%) design flood. The level of flood risk was displayed for resident/industrial area using information about maximum depth and velocity of each node computed from the 2D inundation map. The research outcome would be very useful in establishing specified emergency action plans (EAP) in case of levee break and overflowing resulting from a flood.

Evaluation of Leak Rate Through a Crack with Linearly-Varying Sectional Area (선형적으로 변하는 단면적을 가진 균열에서의 누설률 평가)

  • Park, Jai Hak
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.40 no.9
    • /
    • pp.821-826
    • /
    • 2016
  • The leak before break (LBB) concept is used in pipe line design for nuclear power plants. For application of the LBB concept, leak rates through cracks should be evaluated accurately. Usually leak late analyses are performed for through-thickness cracks with constant cross-sectional area. However, the cross-sectional area at the inner pipe surface of a crack can be different from that at the outer surface. In this paper, leak rate analyses are performed for the cracks with linearly-varying cross-sectional areas. The effect of varying the cross-sectional area on leak rates was examined. Leak rates were also evaluated for cracks in bi-material pipes. Finally, the effects of crack surface morphology parameters on leak rates were examined.

An Estimation Process of Effort and Cost in Security Evaluation of Information Technology Security Systems by utilizing Evaluation Work Break-down Structure (EWBS를 통한 정보보호 시스템의 보안성 평가 업무량 및 비용 산정 프로세스)

  • You, Hyung-Joon;Ko, Jeong-Ho;Chang, Soo-Jin;Ahn, Sun-Suk;Lee, Gang-Soo;Jung, Hong-Jin
    • Journal of KIISE:Software and Applications
    • /
    • v.27 no.2
    • /
    • pp.134-147
    • /
    • 2000
  • Even though software industry has been activated, there lack in results of studies on evaluation effort and cost of software systems including Information Technology Security System (ITSS). In this paper, we present a process and a tool for evaluation effort and cost of ITSS, which are conformed to a ITSS evaluation criteria(i. e., Common Criteria or ISO/IEC 15408), by utilizing Evaluation Work Break-down Structure (EWBS) and conventional software development cost estimation methods. Even though we concentrate on ITSS, results of this paper can be applied to estimation of effort and cost of evaluation of software development process and software products.

  • PDF

Study on Application of Diffusion Wave Inundation Analysis Model Linked with GIS (GIS와 연계한 확산파 침수해석 모형의 적용에 대한 연구)

  • Cho, Wan-Hee;Han, Kun-Yeon;Choi, Seung-Yong
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.12 no.3
    • /
    • pp.88-100
    • /
    • 2009
  • An inundation analysis was performed on Hwapocheon, one of the tributaries of Nakdong River, which was inundated by heavy rain in August, 2002 with overtopping and levee break. The results of the developed model, 2D diffusion wave inundation analysis model, was compared with inundation trace map as well as inundation depth in terms of time and maximum inundated area calculated from FLUMEN model for the assessment of model applicability. The results from the developed model showed high fitness of 88.61% in comparison with observed data. Also maximum inundated area and spatial distribution of inundation zone were also found to be consistent with the results of FLUMEN model. Therefore, inundation zone and maximum inundation area calculated over a period of time by adopting 2D diffusion wave inundation analysis model can be used as a database for identifying high risk areas of inundation and establishing flood damage reduction measures.

  • PDF

Comparison of flood inundation simulation between one- and two-dimensional numerical models for an emergency action plan of agricultural reservoirs

  • Kim, Jae Young;Jung, Sung Ho;Yeon, Min Ho;Lee, Gi Ha;Lee, Dae Eop
    • Korean Journal of Agricultural Science
    • /
    • v.48 no.3
    • /
    • pp.515-526
    • /
    • 2021
  • The frequency of typhoons and torrential rainfalls has increased due to climate change, and the concurrent risk of breakage of dams and reservoirs has increased due to structural aging. To cope with the risk of dam breakage, a more accurate emergency action plan (EAP) must be established, and more advanced technology must be developed for the prediction of flooding. Hence, the present study proposes a method for establishing a more effective EAP by performing flood and inundation analyses using one- and two-dimensional models. The probable maximum flood (PMF) under the condition of probable maximum precipitation (PMP) was calculated for the target area, namely the Gyeong-cheon reservoir watershed. The breakage scenario of the Gyeong-cheon reservoir was then built up, and breakage simulations were conducted using the dam-break flood forecasting (DAMBRK) model. The results of the outflow analysis at the main locations were used as the basis for the one-dimensional (1D) and two-dimensional (2D) flood inundation analyses using the watershed modeling system (WMS) and the FLUvial Modeling ENgine (FLUMEN), respectively. The maximum inundation area between the Daehari-cheon confluence and the Naeseong-cheon location was compared for each model. The 1D flood inundation analysis gave an area of 21.3 km2, and the 2D flood inundation analysis gave an area of 21.9 km2. Although these results indicate an insignificant difference of 0.6 km2 in the inundation area between the two models, it should be noted that one of the main locations (namely, the Yonggung-myeon Administrative and Welfare Center) was not inundated in the 1D (WMS) model but inundated in the 2D (FLUMEN) model.