• Title/Summary/Keyword: Breadboard simulation

Search Result 12, Processing Time 0.017 seconds

A Study on the Shaped-Beam Antenna with High Gain Characteristic (고이득 특성을 갖는 성형 빔 안테나에 대한 연구)

  • Eom, Soon-Young;Yun, Je-Hoon;Jeon, Soon-Ick;Kim, Chang-Joo
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.18 no.1 s.116
    • /
    • pp.62-75
    • /
    • 2007
  • This paper describes a shaped-beam antenna for increasing the antenna gain of a radiating element. The proposed antenna structure is composed of an exciting element and a multi-layered disk array structure(MDAS). The stack micro-strip patch elements were used as the exciter for effectively radiating the electromagnetic power to the MDAS over the broadband, and finite metallic disk array elements - which give the role of a director for shaping the antenna beam with the high gain - were finitely and periodically layered onto it. The efficient power coupling between the exciter and the MDAS should be carried out in such a way that the proposed antenna has a high gain characteristic. The design parameters of the exciter and the MDAS should be optimized together to meet the required specifications to meet the required specifications. In this study, a shaped-beam antenna with high gain was optimally designed under the operating conditions with a linear polarization and the frequency band of $9.6{\sim}10.4\;GHz$. Two methods constructed using thin dielectric film and dielectric foam materials respectively were also proposed in order to implement the MBAS of the antenna. In particular, through the computer simulation process, the electrical performance variations of the antenna with the MDAS realized by the thin dielectric film materials were shown according to the number of disk array elements in the stack layer. Two kinds of antenna breadboard with the MDAS realized with the thin dielectric film and dielectric foam materials were fabricated, but experimentation was conducted only on the antenna breadboard(Type 1) with the MDAS realized with the thin dielectric film materials according to the number of disk array elements in the stack layer in order to compare it with the electrical performance variations obtained during the simulation. The measured antenna gain performance was found to be in good agreement with the simulated one, and showed the periodicity of the antenna gain variations according to the stack layer number of the disk array elements. The electrical performance of the Type 1 antenna was measured at the center frequency of 10 GHz. As the disk away elements became the ten stacks, a maximum antenna gain of 15.65 dBi was obtained, and the measured return loss was not less than 11.4 dB within the operating band. Therefore, a 5 dB gain improvement of the Type 1 antenna can be obtained by the MDAS that is excited by the stack microstrip patch elements. As the disk array elements became the twelve stacks, the antenna gain of the Type 1 was measured to be 1.35 dB more than the antenna gain of the Type 2 by the outer dielectric ring effect, and the 3 dB beam widths measured from the two antenna breadboards were about $28^{\circ}$ and $36^{\circ}$ respectively.

A Study on a Planar Array Antenna Design with a Flat-Topped Radiation Pattern (구형 방사 패턴을 갖는 평면 배열 안테나 설계에 대한 연구)

  • Eom Soon-Young;Pyo Cheol-Sig;Jeon Soon-Ick;Kim Chang-Joo
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.15 no.9
    • /
    • pp.896-905
    • /
    • 2004
  • In this paper, the design, fabrication and experiment on a planar array antenna with a flat-topped radiation pattern for a mobile base station antenna were described. The current distribution of an antenna aperture, which is easily realizable in a feeding network compared with the conventional one of sin(x)/x was optimized for shaping a desired flat-topped radiation pattern. The planar array antenna designed in this paper has a rectangular lattice and is composed of array elements of 16${\times}$8. Each radiating element, which is a microstrip element fed coaxially, has a linear vertical polarization and the feed network which use a Wilkinson power divider and a 180$^{\circ}$ ring hybrid coupler as a base element is designed. The flat-topped radiation pattern with 90$^{\circ}$ is shaped by 16 array elements with the element spacing of 0.55 λ$_{ο}$ in the azimuth plane, and the normal radiation pattern with 10$^{\circ}$ is shaped by 8 array elements with the element spacing of 0.65 λ$_{ο}$ in the elevation plane. Also, the planar array antenna is symmetrically divided into four parts. It consists of one hundred-twenty-eight radiating elements, thirty-two 1-4 column dividers, low 1-8 row dividers and one 1-4 input power divider. In order to verify electrical performances of the planar way antenna proposed in this paper, the experimental breadboard operated in tile band of 1.92~2.17 GHz(IMT2000 band) was fabricated, and its experimental results were a good agreement with simulation ones.