• 제목/요약/키워드: Brazilian tensile strength

검색결과 84건 처리시간 0.021초

The effect of jaw's curvature on Brazilian tensile strength of rocks

  • Yousefi, Halime;Fereidooni, Davood
    • Geomechanics and Engineering
    • /
    • 제23권2호
    • /
    • pp.165-178
    • /
    • 2020
  • This paper investigates the effect of the jaw's curvature, also known by contact angle and jaw arc central angle (2α), of the Brazilian test apparatus on indirect tensile strength of various rock types. That's why, ten rock samples including limestone, marble, skarn, granite, diorite, and granodiorite were collected from some quarries in different provinces of Iran. Petrographic, mineralogical and textural investigations were performed using thin section analyses. Physical properties of the selected rock samples namely dry and saturated unit weights, porosity, water absorption, and specific gravity were determined for the rock samples. In addition, Brazilian tensile strength at different 2α angles (i.e., 2α = 0°, 10°, 15°, 20°, 45°, and 60°) were determined for the rocks in the laboratory. Results show that the parameter for the rocks is between 3.81 MPa at 2α=0° and 54.76 MPa at 2α=60°. This means that Brazilian tensile strength increased with increasing 2α angle from 0° to 60°. Also, it was found that the highest change rate of the Brazilian tensile strength occurs in range of 2α=15°-30° for most studied rock samples. In some tested samples, the parameter is decreased only at 2α = 60°. The values of Brazilian tensile strength of the rocks tested by flat and standard jaws are near to each other.

Estimation of tensile strength and moduli of a tension-compression bi-modular rock

  • Wei, Jiong;Zhou, Jingren;Song, Jae-Joon;Chen, Yulong;Kulatilake, Pinnaduwa H.S.W.
    • Geomechanics and Engineering
    • /
    • 제24권4호
    • /
    • pp.349-358
    • /
    • 2021
  • The Brazilian test has been widely used to determine the indirect tensile strength of rock, concrete and other brittle materials. The basic assumption for the calculation formula of Brazilian tensile strength is that the elastic moduli of rock are the same both in tension and compression. However, the fact is that the elastic moduli in tension and compression of most rocks are different. Thus, the formula of Brazilian tensile strength under the assumption of isotropy is unreasonable. In the present study, we conducted Brazilian tests on flat disk-shaped rock specimens and attached strain gauges at the center of the disc to measure the strains of rock. A tension-compression bi-modular model is proposed to interpret the data of the Brazilian test. The relations between the principal strains, principal stresses and the ratio of the compressive modulus to tensile modulus at the disc center are established. Thus, the tensile and compressive moduli as well as the correct tensile strength can be estimated simultaneously by the new formulas. It is found that the tensile and compressive moduli obtained using these formulas were in well agreement with the values obtained from the direct tension and compression tests. The formulas deduced from the Brazilian test based on the assumption of isotropy overestimated the tensile strength and tensile modulus and underestimated the compressive modulus. This work provides a new methodology to estimate tensile strength and moduli of rock simultaneously considering tension-compression bi-modularity.

Estimation of tensile strength of ultramafic rocks using indirect approaches

  • Diamantis, Konstantinos
    • Geomechanics and Engineering
    • /
    • 제17권3호
    • /
    • pp.261-270
    • /
    • 2019
  • Because the estimation of the tensile strength is very important in any geotechnical project, many attempts have been made to determine. But the immediate determination of the tensile strength is usually difficult owing to well-shaped specimens, time-consuming, expensive and sometimes unreliable. In this study, engineering properties of several ultramafic rock samples were measured to assess the correlations between the Brazilian Tensile Strength (BTS) and degree of serpentinization, physical, dynamic and mechanical characteristics. For this purpose, a comprehensive laboratory testing program was conducted after collecting thirty-two peridotite and fifty-one serpentinite rock samples, taken from central Greece, in accordance with ASTM and ISRM standards. In addition, a representative number of them were subjected to petrographic studies and the obtained results were statistically described and analysed. Simple and multiple regression analyses were used to investigate the relationships between the Brazilian Tensile Strength and the other measured properties. Thus, empirical equations were developed and they showed that all of the properties are well correlated with Brazilian Tensile Strength. The curves with the $45^{\circ}$ line (y = x) were extracted for evaluating the validity degree of concluded empirical equations which approved approximately close relationships between Brazilian Tensile Strength and the measured properties.

Simulating the influence of pore shape on the Brazilian tensile strength of concrete specimens using PFC2D

  • Haeri, Hadi;Sarfarazi, Vahab;Zhu, Zheming;Marji, Mohammad Fatehi
    • Computers and Concrete
    • /
    • 제22권5호
    • /
    • pp.469-479
    • /
    • 2018
  • The Brazilian tensile strength of concrete samples is a key parameter in fracture mechanics since it may significantly change the quality of concrete materials and their mechanical behaviors. It is well known that porosity is one of the most often used physical indices to predict concrete mechanical properties. In the present work the influence of porosity shape on concrete tensile strength characteristics is studied, using a bonded particle model. Firstly numerical model was calibrated by Brazilian experimental results and uniaxial test out puts. Secondly, Brazilian models consisting various pore shapes were simulated and numerically tested at a constant speed of 0.016 mm/s. The results show that pore shape has important effects on the failure pattern. It is shown that the pore shape may play an important role in the cracks initiation and propagation during the loading process which in turn influence on the tensile strength of the concrete samples. It has also been shown that the pore size mainly affects the ratio of uniaxial compressive strength to that of the tensile one in the simulated material samples.

제주도 화산암의 압열인장강도와 일축압축강도로부터 추정된 점착력과 내부마찰각 (Cohesion and Internal Friction Angle Estimated from Brazilian Tensile Strength and Unconfined Compressive Strength of Volcanic Rocks in Jeju Island)

  • 문경태;양순보
    • 한국지반공학회논문집
    • /
    • 제36권2호
    • /
    • pp.17-28
    • /
    • 2020
  • 본 연구에서는, 제주도 화산암의 인장강도와 관련하여, 기존의 연구결과 및 본 연구에서 수행된 시험결과에 대한 종합적인 비교·분석을 수행하였으며, 제주도 화산암의 압열인장강도와 일축압축강도로부터 추정된 점착력과 내부 마찰각의 특성 및 그 유효성을 각각 살펴보았다. 제주도 화산암의 압열인장강도는 흡수율과 밀접한 관계에 있었으며, 흡수율이 증가함에 따라 지수 함수적으로 급격하게 감소하는 특성을 갖고 있었다. 내부 마찰각은 압열인장도강도에 대한 일축압축강도의 비(σc / σt)와 밀접한 관계에 있었으며, 강도비 σc / σt가 증가함에 따라 내부 마찰각은 로그 함수적으로 증가하는 특성을 갖고 있었다. 그리고 제주도 화산암의 강도비 σc / σt는 내부 마찰각의 크기에 따라 약 5~20 사이의 값을 나타내고 있었다. 한편, 점착력(c)의 경우, 흡수율 및 압열인장강도와 밀접한 관계에 있음을 확인할 수 있었다. 점착력과 흡수율 사이에는 압열인장강도와 흡수율의 관계와 같이 지수 함수적인 관계에 있으며, 점착력과 압열인장강도 사이에는 선형관계에 있음을 확인할 수 있었다. 그리고 일축압축강도와 압열인장강도로부터 추정된 내부 마찰각과 점착력은 각각 삼축압축강도로부터 추정된 내부 마찰각과 점착력에 비해 약 13% 과소평가 그리고 약 24% 정도 과대평가되는 경향을 보였다.

Prediction of unconfined compressive and Brazilian tensile strength of fiber reinforced cement stabilized fly ash mixes using multiple linear regression and artificial neural network

  • Chore, H.S.;Magar, R.B.
    • Advances in Computational Design
    • /
    • 제2권3호
    • /
    • pp.225-240
    • /
    • 2017
  • This paper presents the application of multiple linear regression (MLR) and artificial neural network (ANN) techniques for developing the models to predict the unconfined compressive strength (UCS) and Brazilian tensile strength (BTS) of the fiber reinforced cement stabilized fly ash mixes. UCS and BTS is a highly nonlinear function of its constituents, thereby, making its modeling and prediction a difficult task. To establish relationship between the independent and dependent variables, a computational technique like ANN is employed which provides an efficient and easy approach to model the complex and nonlinear relationship. The data generated in the laboratory through systematic experimental programme for evaluating UCS and BTS of fiber reinforced cement fly ash mixes with respect to 7, 14 and 28 days' curing is used for development of the MLR and ANN model. The data used in the models is arranged in the format of four input parameters that cover the contents of cement and fibers along with maximum dry density (MDD) and optimum moisture contents (OMC), respectively and one dependent variable as unconfined compressive as well as Brazilian tensile strength. ANN models are trained and tested for various combinations of input and output data sets. Performance of networks is checked with the statistical error criteria of correlation coefficient (R), mean square error (MSE) and mean absolute error (MAE). It is observed that the ANN model predicts both, the unconfined compressive and Brazilian tensile, strength quite well in the form of R, RMSE and MAE. This study shows that as an alternative to classical modeling techniques, ANN approach can be used accurately for predicting the unconfined compressive strength and Brazilian tensile strength of fiber reinforced cement stabilized fly ash mixes.

수압파쇄시험 해석을 위한 중공원통 인장시험과 압열인장시험 화강암 인장강도 비교 (Comparison of Tensile Strengths in Granite Using Brazilian Tests and Hollow Cylinder Tests for Hydraulic Fracturing Test Interpretation)

  • 조영욱;장찬동;이태종;김광염
    • 터널과지하공간
    • /
    • 제23권5호
    • /
    • pp.362-371
    • /
    • 2013
  • 수압파쇄법으로 최대수평주응력 크기 규명에 필요한 요소 중 하나인 암반의 인장강도를 측정하는 방법에 대해 연구하였다. 석모도 시추공에서 회수한 화강암 시료에 대해 두 가지 실내시험(중공원통 인장시험 및 압열인장시험)으로 인장강도를 측정하고 두 결과가 차이를 보이는지 비교하였다. 중공원통 인장시험에서는 높은 수압증가율 상태에서 더 높은 인장강도를 보여, 현장의 수압파쇄시험에서 보인 수압 증가율 상태에서 측정된 인장강도나 그 증가율로 보정된 인장강도를 이용해야한다는 점을 보였다. 인장강도에 대한 수압 증가율 효과와 크기효과를 보정하면 중공원통 인장시험 결과는 압열인장시험 결과와 유사하게 나타났으며 이는 수압파쇄 인장강도를 위해 압열인장강도를 이용할 수도 있다는 점을 시사한다.

서울화강암의 암석강도 측정치의 비교 평가 연구 (A Study on Comparison and Evaluation of various Strength in Seoul Granite)

  • 윤지선;김두영;정흥모
    • 터널과지하공간
    • /
    • 제5권2호
    • /
    • pp.144-154
    • /
    • 1995
  • In this paper, we make a study on comparison and evaluation of the seoul granite properties, which are unit weight, uniaxial compressive strength, Brazilian tensile strength and, point load strength. The typical result are as follow- 1. From the measured value of point load strength anisotropy index, the seoul granite is considered to be homogeneous. 2. There is a linear relationship between uniaxial compressive strength and size corrected point load strength index. 3. Brazilian tensile strength and size corrected point load strength index are closely tied together.

  • PDF

일축압축강도·압열인장강도를 이용한 제주도 화산암의 점착력과 내부마찰각의 간이추정 (Simplified Estimation of the Cohesion and Internal Friction Angle of Volcanic Intact Rocks in Jeju Island Using Uniaxial Compressive Strength and/or Brazilian Tensile Strength)

  • 양순보
    • 한국지반공학회논문집
    • /
    • 제38권10호
    • /
    • pp.5-15
    • /
    • 2022
  • 본 연구에서는, 제주도 화산암의 일축압축강도·압열인장강도를 이용하여 점착력과 내부마찰각을 간편하게 추정하기 위한 방법을 제안하기 위하여, 제주도 화산암석에 대한 삼축압축시험, 일축압축시험 및 압열인장시험의 결과로부터 각각 산정된 점착력 및 내부마찰각을 서로 비교·분석하였으며, 퍼센트 오차 평균값을 이용하여 그 추정 정도를 살펴보았다. 그 결과, 제주도 화산암의 일축압축강도·압열인장강도를 이용한 점착력과 내부마찰각의 다양한 간이 추정법을 제안할 수 있었으며, 제안된 방법 중에서 삼축압축시험 결과로부터 산정된 점착력 및 내부마찰각에 가까운, 다시 말해서 정도가 높은 값을 추정하기 위해서는, 일축압축강도를 이용하여 추정하는 방법이 가장 바람직하다는 것을 알 수 있었다.

Experimental and numerical simulating of the crack separation on the tensile strength of concrete

  • Sarfarazi, Vahab;Haeri, Hadi;Shemirani, Alireza Bagher;Zhu, Zheming;Marji, Mohammad Fatehi
    • Structural Engineering and Mechanics
    • /
    • 제66권5호
    • /
    • pp.569-582
    • /
    • 2018
  • Effects of crack separation, bridge area, on the tensile behaviour of concrete are studied experimentally and numerically through the Brazilian tensile test. The physical data obtained from the Brazilian tests are used to calibrate the two-dimensional particle flow code based on discrete element method (DEM). Then some specially designed Brazilian disc specimens containing two parallel cracks are used to perform the physical tests in the laboratory and numerically simulated to make the suitable numerical models to be tested. The experimental and numerical results of the Brazilian disc specimens are compared to conclude the validity and applicability of these models used in this research. Validation of the simulated models can be easily checked with the results of Brazilian tests performed on non-persistent cracked physical models. The Brazilian discs used in this work have a diameter of 54 mm and contain two parallel centred cracks ($90^{\circ}$ to the horizontal) loaded indirectly under the compressive line loading. The lengths of cracks are considered as; 10 mm, 20 mm, 30 mm and 40 mm, respectively. The visually observed failure process gained through numerical Brazilian tests are found to be very similar to those obtained through the experimental tests. The fracture patterns demonstrated by DEM simulations are mostly affected by the crack separation but the tensile strength of bridge area is related to the fracture pattern and failure mechanism of the testing samples. It has also been shown that when the crack lengths are less than 30 mm, the tensile cracks may initiate from the cracks tips and propagate parallel to loading direction till coalesce with the other cracks tips while when the cracks lengths are more than 30 mm, these tensile cracks may propagate through the intact concrete itself rather than that of the bridge area.