• 제목/요약/키워드: Brayton Cycle

검색결과 75건 처리시간 0.021초

전력단가추정기반 초임계 이산화탄소 발전 시스템 최적 설계 인자 도출 (Design Criteria Derivation of Supercritical Carbon Dioxide Power Cycle based on Levelized Cost of Electricity(LCOE))

  • 박성호;차재민;김준영;신중욱;염충섭
    • 청정기술
    • /
    • 제23권4호
    • /
    • pp.441-447
    • /
    • 2017
  • 개념설계 단계에서 개발 공정에 대한 경제적 타당성 분석에 대한 중요성이 대두되고 있으며, 목표 경제성에 부합하는 공정개발을 위한 공정 최적화에 대한 연구도 활발히 진행되고 있다. 발전 시스템 분야에서는 전력 단가(Levelized cost of electricity, LCOE)를 예측하여 경제적 효과를 정량적으로 비교 분석하는 평가 방법이 많이 활용되고 있다. 본 연구에서는 목표 전력 단가에 부합한 발전 시스템을 설계하기 위해서 요구되는 핵심기기의 설계 조건을 역산출 할 수 있는 플랫폼을 구축하였으며 초임계 이산화탄소 발전 시스템이 석탄 화력에 적용될 경우, 목표 전력 단가(초임계 증기 랭킨 사이클 발전 단가, $ 85.4 /kWh)를 충족하기 위해 요구되는 주요 핵심기기(압축기, 터빈, 열교환기) 등의 설계 지표 기준을 도출하였다. 터빈의 등엔트로피 효율이 86%인 경우, 주압축기 효율은 88% 이상 설계되어야 한다. 만약 터빈의 등엔트로피 효율이 88%로 설계된 경우, 주압축기 효율은 82%까지 완화하여 설계가 가능하다. End seal 부분에서 누설량을 0.24% 수준으로 유지하고, 열교환기의 경우 cold side 출구측 온도가 $92{\sim}97^{\circ}C$, 열용량은 2650 ~ 2680 MWth로 설계한다면 목표 전력단가를 충족시킬 수 있을 것으로 확인되었다.

36 MTD급 천연가스 BOG 재액화 플랜트 기본설계 (Basic Design of 36 MTD Class Natural Gas BOG Re-Liquefaction System)

  • 고준석;박성제;김기덕;홍용주;고득용;김효봉;염한길
    • 대한기계학회논문집 C: 기술과 교육
    • /
    • 제1권1호
    • /
    • pp.99-105
    • /
    • 2013
  • LNG 극저온기계기술 시험인증센터에 구축되는 LNG 선박용 펌프 및 압축기 성능시험에서 발생하는 증발가스는 안전을 위하여 전량 회수가 요구된다. 본 논문에서는 36 MTD 용량의 천연가스 재액화 시스템에 대한 기본 설계 연구를 수행하였다. 대기압, $-60^{\circ}C$, 일반적인 도시가스 조성비, 1,500 kg/hr 유량의 공급 가스를 기본 설계 조건으로 하여 공정 설계가 이루어졌고, 입구 온도 조건 및 가스 조성비에 따른 LNG 생산량 또한 계산하여 다양한 입구 설계 조건에 따른 시스템의 성능 변화를 비교, 분석하였다. 공정 설계 외에도 재액화 시스템의 핵심 기기인 송풍기, 압축기, 극저온 열교환기, 컴팬더의 제작 사양이 도출되었으며, 전력 및 냉각수의 유틸리티 요구조건 또한 기본 설계를 통해 도출되었다.

바이오가스 고질화와 초저온액화공정을 통한 액화바이오메탄 생산 (Biogas upgrading and Producing the Liquefied Bio-methane by Cryogenic Liquefaction Process)

  • 심동민;성현제;박성범;김낙주;장호명;이재영;이영민;이우철;오화수
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 한국신재생에너지학회 2010년도 춘계학술대회 초록집
    • /
    • pp.246.1-246.1
    • /
    • 2010
  • 본 연구는 바이오가스의 에너지효율성을 높이기 위한 연구로서 바이오가스 정제공정과 초저온액화공정을 통하여 액화바이오메탄을 생산하는 바이오가스 고질화기술개발 연구이다. 바이오가스 정제공정은 탈황, 제습, 흡착, 압축, $CO_2/CH_4$ 분리공정으로 구성하고, 초저온액화공정은 열교환기, $CO_2$ 제거설비, 질소냉매 공급공정으로 구성하여 혐기성소화조에서 발생하는 바이오가스($CH_4$ 농도: 60~65%, $H_2S$: 1,500~2,500ppm)를 $200Nm^3/hr$의 유량으로 인입시켜 액화바이오메탄을 생산하였다. 연구결과, 탈황공정에서는 가성소다 세정법을 이용하여 1,500~2,500ppm으로 인입되는 $H_2S$를 100ppm 이하로 제거한 후, 흡착법을 이용하여 $H_2S$를 완전히 제거하였다. 바이오가스에 포화된 수분은 냉각제습과 흡착제습공정을 통해 Dew point $-70{\sim}-90^{\circ}C$까지 제거하여 안정적으로 $CO_2/CH_4$ 분리공정에 인입시켰다. $CO_2/CH_4$ 분리공정은 흡착방식을 적용하여 $CH_4$ 순도가 95% 이상인 바이오메탄을 생산하였으며, 이때 메탄 회수율은 약 87%이였다. $CO_2$가 분리된 바이오메탄은 초저온액화공정을 이용하여 액화바이오메탄으로 전환시켰다. 이때 초저온액화공정은 Reverse Brayton cycle로 구성하였으며, 냉매로는 질소를 사용하였다. 액화바이오메탄의 생산은 바이오메탄을 등엔트로피과정인 단열팽창을 통하여 $-155{\sim}-159^{\circ}C$의 초저온으로 냉각되는 질소냉매와 열교환기에서 열교환시켜 이루어졌으며 그 생산량은 $3.46m^3$/day(1bar, $-161^{\circ}C$)이었다.

  • PDF

ADVANCED SFR DESIGN CONCEPTS AND R&D ACTIVITIES

  • Hahn, Do-Hee;Chang, Jin-Wook;Kim, Young-In;Kim, Yeong-Il;Lee, Chan-Bock;Kim, Seong-O;Lee, Jae-Han;Ha, Kwi-Seok;Kim, Byung-Ho;Lee, Yong-Bum
    • Nuclear Engineering and Technology
    • /
    • 제41권4호
    • /
    • pp.427-446
    • /
    • 2009
  • In order to meet the increasing demand for electricity, Korea has to rely on nuclear energy due to its poor natural resources. In order for nuclear energy to be expanded in its utilization, issues with uranium supply and waste management issues have to be addressed. Fast reactor system is one of the most promising options for electricity generation with its efficient utilization of uranium resources and reduction of radioactive waste, thus contributing to sustainable development. The Korea Atomic Energy Research Institute (KAERI) has been performing R&Ds on Sodium-cooled Fast Reactors (SFRs) under the national nuclear R&D program. Based on the experiences gained from the development of KALIMER conceptual designs of a pool-type U-TRU-10%Zr metal fuel loaded reactor, KAERI is currently developing Advanced SFR design concepts that can better meet the Generation IV technology goals. This also includes developing, Advanced SFR technologies necessary for its commercialization and basic key technologies, aiming at the conceptual design of an Advanced SFR by 2011. KAERI is making R&D efforts to develop advanced design concepts including a passive decay heat removal system and a supercritical $CO_2$ Brayton cycle energy conversion system, as well as developing design methodologies, computational tools, and sodium technology. The long-term Advanced SFR development plan will be carried out toward the construction of an Advanced SFR demonstration plant by 2028.

액화공기(Liquid Air) 예냉기반 수소액화공정 성능 해석 및 최적화 (Performance Evaluation and Optimization of Hydrogen Liquefaction Process Using the Liquid Air for Pre-Cooling)

  • 박성호;안준건;류주열;고아름
    • 한국수소및신에너지학회논문집
    • /
    • 제30권6호
    • /
    • pp.490-498
    • /
    • 2019
  • The intermittent electric power supply of renewable energy can have extremely negative effect on power grid, so long-term and large-scale storage for energy released from renewable energy source is required for ensuring a stable supply of electric power. Power to gas which can convert and store the surplus electric power as hydrogen through water electrolysis is being actively studied in response to increasing supply of renewable energy. In this paper, we proposed the novel concept of hydrogen liquefaction process combined with pre-cooling process using the liquid air. It is that hydrogen converted from surplus electric power of renewable energy was liquefied through the hydrogen liquefaction process and vaporization heat of liquid hydrogen was conversely recovered to liquid air from ambient air. Moreover, Comparisons of specific energy consumption (kWh/kg) saved for using the liquid air pre-cooling was quantitatively conducted through the performance analysis. Consequently, about 12% of specific energy consumption of hydrogen liquefaction process was reduced with introducing liquid air for pre-cooling and optimal design point of helium Brayton cycle was identified by sensitivity analysis on change of compression/expansion ratio.