• 제목/요약/키워드: Braun tubes

검색결과 6건 처리시간 0.021초

펄스 Nd:YAG 레이저에 의한 브라운관 부품의 용접시 빔의 출력특성과 광학변수 (Characteristics of Output Energy and Optical Parameters in Welding of Braun Tubes by Pulsed Nd:YAG Laser)

  • 김종도;하승협
    • 한국레이저가공학회지
    • /
    • 제8권1호
    • /
    • pp.27-37
    • /
    • 2005
  • During laser spot welding of the braun tube electron gun, phenomena such as serious spattering and oxidative reaction, etc. were occurred. The spatter occurred from weld pool affects the braun tube, namely it blocks up a very small hole on the shadow mask and causes short circuit between two poles of the electron gun. We guessed that high power density and oxidative reaction are main sources of these problems. So, we studied to prevent and to reduce spatter occurring in spot welding of the braun tube electron gun using pulsed Nd:YAG laser. The characteristics of laser output power was estimated, and the loss of laser energy by optical parameter and spatter was measured by powermeter. The effects of welding parameters, laser defocused distance and incident angle, were investigated on the shape and penetration depth of the laser welded bead in flare and flange joints. From these results, the laser peak power was a major factor to control penetration depth and to occur spatter. It was found that the losses of laser energy by optic parameter and sticked spatter affect seriously laser weldability of thin sheets.

  • PDF

브라운관 전자총 부품의 펄스 Nd:YAG레이저 용접에 관한 연구 (I) - 빔의 출력특성과 광학변수 - (A Study on Pulsed Nd:YAG Laser Welding of Electron Gun in Braun Tubes (I) - Characteristics of Beam Output Energy and Optical Parameters -)

  • 김종도;하승협;조상명
    • Journal of Welding and Joining
    • /
    • 제20권4호
    • /
    • pp.525-534
    • /
    • 2002
  • During laser spot welding of the braun tube electron gun, phenomena such as serious spattering and oxidative reaction, etc. were occurred. The spatter occurred from weld pool affects the braun tube, namely it blocks up a very small hole on the shadow mask and causes short circuit between two roles of the electron gun. We guessed that high power density and oxidative reaction are main sources of these problems. So, we studied to prevent and to reduce spatter occurring in spot welding of the braun tube electron gun using pulsed Nd:YAG laser. The characteristics of laser output power was estimated, and the loss of laser energy by optical parameter and spatter was measured by powermeter. The effects of welding parameters, laser defocused distance and incident angle, were investigated on the shape and penetration depth of the laser welded bead in flare and flange joints. From these results, the laser peak power was a major factor to control penetration depth and to occur spatter. It was found that the losses of laser energy by optic parameter and sticked spatter affect seriously laser weldability of thin sheets. The deepest penetration depth is gotten on focal position, and a "bead transition" occurred with a slight displacement of focal position relative to the workpiece surface and the absorption rate of the laser energy is affected by the shape factor of the workpiece. When we changed the incident angle of laser beam, the penetration depth was decreased a little with increasing of the incident angle, and the bead width was increased. The spattering was prevented by considering laser beam energy and incident angle.ent angle.

세도우 마스크 장력에 열공정이 미치는 영향 (Effect of Heat Treatment Process on the Shadow Mask Tension)

  • 현도익;문영훈;조종래
    • 소성∙가공
    • /
    • 제12권5호
    • /
    • pp.487-492
    • /
    • 2003
  • Tension variations with heat treatment in shadow mask for flat braun tubes are investigated in this study. In CRT, landing shift of the electron beam due to thermal deformation of the tension mask made the color purity of screen worse. In order to get the final results of thermal deformation, the tensile force within the mask and the welding processes between the rail and the extended mask have to be analysed sequentially. In this study, the effect of heat treatment is studied in terms of tension variations of shadow mask during its manufacturing process.

전자공학 및 전자기술의 역사, 현황 그리고 미래 (The history, present status and future perspective of electronics and electronic technologies)

  • 조규심
    • 기술사
    • /
    • 제24권6호
    • /
    • pp.106-112
    • /
    • 1991
  • Electronics has different meanings to different people and in different countries. Hence, let me difine the term in the sense that it is used here. Electronics in the science and the technology of the passage of charged particles in a gas, in a vacumn, or in a semiconductor. The beginning of electronics came in 1895 when H. A. Lorentz postulated the existence of discrete charges called electrons. Two years later J.J. Thompson found these electrons experimentally. In the same year (1897) Braun built what was probaly the first electron tube, essentially a primitive cathode-ray tube. It was not until the start of the 20th century that electronics began to take technological shape. In 1904 Fleming invented the diode which he called a valve. This era begins with the invention of the transistor about 30 years ago. The history of this invention is interesting. M.J. Kelly, director of research(and later president of Bell Laboratories), had the foresight to realize that the telephone system needed electronic switching and better amplifiers. Vacuum tubes were not very reliable, principally because they generated a great deal of heat even when they were not being used, and, particularly, because filaments burned out and the tubes had to be replaced. In 1945 a solid-state physics group wa formed. The foregoing completes the history of electronics and electronic industries up to 1978. There is already a start toward a merging of the computer and the communication industries which might be called information manipulation. This includes storage of information, sorting, computation, information retrieval, and transmission of data. This combination of the computer and the communication fields will penetrate many disciplines. Applications will be made in the fields of law, medicine, biological sciences, engineering, library services publishing banking, reservation systems, management control, education, and defense.

  • PDF