• Title/Summary/Keyword: Branching morphogenesis

Search Result 6, Processing Time 0.021 seconds

Cell cycle-related kinase is a crucial regulator for ciliogenesis and Hedgehog signaling in embryonic mouse lung development

  • Lee, Hankyu;Ko, Hyuk Wan
    • BMB Reports
    • /
    • v.53 no.7
    • /
    • pp.367-372
    • /
    • 2020
  • Cell cycle-related kinase (CCRK) has a conserved role in ciliogenesis, and Ccrk defects in mice lead to developmental defects, including exencephaly, preaxial polydactyly, skeletal abnormalities, retinal degeneration, and polycystic kidney. Here, we found that Ccrk is highly expressed in mouse trachea and bronchioles. Ccrk mutants exhibited pulmonary hypoplasia and abnormal branching morphogenesis in respiratory organ development. Furthermore, we demonstrated that Ccrk mutant lungs exhibit not only impaired branching morphogenesis but also a significant sacculation deficiency in alveoli associated with reduced epithelial progenitor cell proliferation. In pseudoglandular stages, Ccrk mutant lungs showed a downregulation of Hedgehog (Hh) signaling and defects in cilia morphology and frequency during progenitor-cell proliferation. Interestingly, we observed that activation of the Hh signaling pathway by small-molecule smoothened agonist (SAG) partially rescued bud morphology during branch bifurcation in explants from Ccrk mutant lungs. Therefore, CCRK properly regulates respiratory airway architecture in part through Hh-signal transduction and ciliogenesis.

Morphological Changes in the Mammary Organ Culture of the Rat Treated with 7,12-Dimethylbenz[$\alpha$]anthracene and N-methyl-N-nitrosourea (7,12-Dimethylbenz[$\alpha$anthracene 및 N-methyl-N-nitrosourea를 투여한 랫드 유선 조직 배양에 대한 형태학적 변화)

  • 문지영;정자영;김옥희;이형환
    • Toxicological Research
    • /
    • v.16 no.4
    • /
    • pp.275-284
    • /
    • 2000
  • The organ culture model of the whole mammary gland has many advantages for the study of branching morphogenesis and biological characteristics, including tumorigenesis. Prior to whole gland organ culture, rats were treated with 7,12-dimethylbenz[a]anthracene (DMBA) or N-methyl-N-nitrosourea (MNU) for one week. The tramdorming effect and the morphological changes were assessed by the whole mount preparations and histopathological examination in terminal end buds (TEB), terminal ducts (TD), alveolar buds (AB), alveolar lobules (AL) and hyperplastic alveolar nodules (HAN) of the mammary gland. Grossfindings of the mammary glands at dissection were higher branching morphogenesis and larger volume in carcinogen-treated groups than in carcinogen-non-treated groups. Results of the whole mount method were coincided with those of the histopathological observations. Circular TEB, normally maintained AB, AL, and high cellular density were more frequently observed in carcinogen-treated groups than in carcinogen-nan-treated groups. Histopathologically, as a preneoplastic marker, HAN was maintained only in mammary organ culture of the carcinogen-treated groups. These findings suggest that in vivo trans-formation effects by carcinogens persisted during the mammary organ culture. These results were more characteristic in DMBA than in MNU-treated group. Ducts and terminal ducts appeared to have lost morphology during their growths in case of without diethylstilbestrol (DES). The fact that in vitro organ culture without DES was resulted in abnormal ductular morphogenesis confirms that DES is a physiological regulator of ductular epithelial cell growth.

  • PDF

Hepatocyte Growth Factor and Met: Molecular Dialogue for Tissue Organization and Repair

  • Matsumoto, Kunio;Nakamura, Toshikazu
    • Animal cells and systems
    • /
    • v.2 no.1
    • /
    • pp.1-8
    • /
    • 1998
  • Hepatocyte growth factor (HGF), originally discovered and cloned as a powerful mitogen for hepatocytes, is a four kringle-containing growth factor which specifically binds to membrane-spanning tyrosine kinase, c-Met/HGF receptor. HGF has mitogenic, motogenic (enhancement of cell movement), morphogenic (e.g., induction of branching tubulogenesis), and anti-apoptotic activities for a wide variety of cells. During embryogenesis, HGF supports organogenesis and morphogenesis of various tissues, including liver, kidney, lung, gut, mammary gland, and tooth. In adult tissues HGF elicits an organotrophic function which supports regeneration of organs such as liver, kidney, lung, and vascular tissues. HGF is also a novel member of neurotrophic factor in nervous systems. Together with the preferential expression of HGF in mesenchymal or stromal cells, and c-Met/HGF receptor In epithelial or endothelial cells, the HGF-Met coupling seems to orchestrate dynamic morphogenic processes through epithelial-mesenchymal (or-stromal) interactions for organogenesis and organ regeneration. HGF or HGF gene may well become unique therapeutic tools for treatment of patients with various organ failure, through its actions to reconstruct organized tissue architectures. This review focuses on recently characterized biological and physiological functions integrated by HGF-Met coupling during organogenesis and organ regeneration.

  • PDF

The SH2 domain is crucial for function of Fyn in neuronal migration and cortical lamination

  • Lu, Xi;Hu, Xinde;Song, Lingzhen;An, Lei;Duan, Minghui;Chen, Shulin;Zhao, Shanting
    • BMB Reports
    • /
    • v.48 no.2
    • /
    • pp.97-102
    • /
    • 2015
  • Neurons in the developing brain form the cortical plate (CP) in an inside-out manner, in which the late-born neurons are located more superficially than the early-born neurons. Fyn, a member of the Src family kinases, plays an important role in neuronal migration by binding to many substrates. However, the role of the Src-homology 2 (SH2) domain in function of Fyn in neuronal migration remains poorly understood. Here, we demonstrate that the SH2 domain is essential for the action of Fyn in neuronal migration and cortical lamination. A point mutation in the Fyn SH2 domain ($Fyn^{R176A}$) impaired neuronal migration and their final location in the cerebral cortex, by inducing neuronal aggregation and branching. Thus, we provide the first evidence of the Fyn SH2 domain contributing to neuronal migration and neuronal morphogenesis.

Extracellular Matrix Metalloproteinase Inducer is Regulated Developmentally and Functionally in the Rat Submandibular Gland

  • Yoo, Hong-Il;Suh, Han-Young;Kim, Sun-Hun
    • International Journal of Oral Biology
    • /
    • v.40 no.3
    • /
    • pp.127-133
    • /
    • 2015
  • The salivary gland undergoes complex process of growth and differentiation of the branching morphogenesis of ductal system during the prenatal and early postnatal periods which are regulated by various elements in the extracellular matrix. Extracellular matrix metalloproteinase inducer (EMMPRIN) is a cell adhesion molecule. In the present study, localization and expression of EMMPRIN in development and effects of chorda-lingual denervation and cyclosporine A (CsA) treatment on the EMMPRIN expression were investigated. Immunohistochemistry, RT-PCR and Western blot were used to determine expression level. Immunohistochemistry revealed that EMMPRIN was localized specifically in the cytoplasm of ductal cells, not acini of the submandibular gland all the postnatal periods. At prenatal day 18, when the formation of ducts was not definite, no immunoreactivity was observed. Both Western blot and RT-PCR analyses revealed that EMMPRIN expression was maintained up to postnatal day 7, decreased after postnatal day 10. The EMMPRIN expression was upregulated by the surgical denervation of the chorda-lingual nerve in the gland as well as by the CsA treatment. The present study suggests that EMMPRIN is a crucial molecule for maintaining physiological functions of the salivary gland.

A Role for Peroxidasin PXN-1 in Aspects of C. elegans Development

  • Lee, Juyeon;Bandyopadhyay, Jaya;Lee, Jin Il;Cho, Injeong;Park, Daeho;Cho, Jeong Hoon
    • Molecules and Cells
    • /
    • v.38 no.1
    • /
    • pp.51-57
    • /
    • 2015
  • The Caenorhabditis elegans peroxidasins, PXN-1 and PXN-2, are extracellular peroxidases; pxn-2 is involved in muscle-epidermal attachment during embryonic morphogenesis and in specific axon guidance. Here we investigate potential roles of the other homologue of peroxidasin, pxn-1, in C. elegans. A pxn-1 deletion mutant showed high lethality under heat-stress conditions. Using a transcriptional GFP reporter, pxn-1 expression was observed in various tissues including neurons, muscles, and hypodermis. A translational fusion showed that PXN-1::GFP was secreted and localized in extracellular matrix, particularly along body wall muscles and pharyngeal muscles. Various neuronal developmental defects were observed in pxn-1 mutants and in pxn-1 over-expressing animals, including handedness, branching, breakage, tangling, and defasciculation. These results suggest that pxn-1, like other peroxidasins, plays an important role throughout development.