• Title/Summary/Keyword: Branch parameter

Search Result 174, Processing Time 0.026 seconds

A Study on the Method of the Vulnerable Area Investigation In Severe Contingencies Using Branch Parameter Continuation Power Flow (BCPF)

  • Seo Sangsoo;Lee Byongjun;Kim Tae-Kyun;Song Hwachang
    • KIEE International Transactions on Power Engineering
    • /
    • v.5A no.4
    • /
    • pp.390-395
    • /
    • 2005
  • The most widely used index for the vulnerable area investigation has been the reactive power margin or sensitivity analysis. But we can only obtain the results of these analyses if the results of load flow are convergent in severe contingencies. Otherwise these methods are not adoptable. This paper presents a good index for overcoming severe contingencies, though the power flow equation is unsolvable using the branch parameter continuation power flow. In simulation, the Korea Electric Power Corporation (KEPCO) Systems are applied.

Nonlinear bending analysis of porous FG thick annular/circular nanoplate based on modified couple stress and two-variable shear deformation theory using GDQM

  • Sadoughifar, Amirmahmoud;Farhatnia, Fatemeh;Izadinia, Mohsen;Talaeitaba, Sayed Behzad
    • Steel and Composite Structures
    • /
    • v.33 no.2
    • /
    • pp.307-318
    • /
    • 2019
  • This is the first attempt to consider the nonlinear bending analysis of porous functionally graded (FG) thick annular and circular nanoplates resting on Kerr foundation. The size effects are captured based on modified couple stress theory (MCST). The material properties of the porous FG nanostructure are assumed to vary smoothly through the thickness according to a power law distribution of the volume fraction of the constituent materials. The elastic medium is modeled by Kerr elastic foundation which consists of two spring layers and one shear layer. The governing equations are extracted based on Hamilton's principle and two variables refined plate theory. Utilizing generalized differential quadrature method (GDQM), the nonlinear static behavior of the nanostructure is obtained under different boundary conditions. The effects of various parameters such as material length scale parameter, boundary conditions, and geometrical parameters of the nanoplate, elastic medium constants, porosity and FG index are shown on the nonlinear deflection of the annular and circular nanoplates. The results indicate that with increasing the material length scale parameter, the nonlinear deflection is decreased. In addition, the dimensionless nonlinear deflection of the porous annular nanoplate is diminished with the increase of porosity parameter. It is hoped that the present work may provide a benchmark in the study of nonlinear static behavior of porous nanoplates.

Kinetic and multi-parameter isotherm studies of picric acid removal from aqueous solutions by carboxylated multi-walled carbon nanotubes in the presence and absence of ultrasound

  • Gholitabar, Soheila;Tahermansouri, Hasan
    • Carbon letters
    • /
    • v.22
    • /
    • pp.14-24
    • /
    • 2017
  • Carboxylated multi-wall carbon nanotubes (MWCNTs-COOH) have been used as efficient adsorbents for the removal of picric acid from aqueous solutions under stirring and ultrasound conditions. Batch experiments were conducted to study the influence of the different parameters such as pH, amount of adsorbents, contact time and concentration of picric acid on the adsorption process. The kinetic data were fitted with pseudo-first order, pseudo-second-order, Elovich and intra-particle diffusion models. The kinetic studies were well described by the pseudo-second-order kinetic model for both methods. In addition, the adsorption isotherms of picric acid from aqueous solutions on the MWCNTs were investigated using six two-parameter models (Langmuir, Freundlich, Tempkin, Halsey, Harkins-Jura, Fowler-Guggenheim), four three-parameter models (Redlich-Peterson, Khan, Radke-Prausnitz, and Toth), two four-parameter equations (Fritz-Schlunder and Baudu) and one five-parameter equation (Fritz-Schlunder). Three error analysis methods, correlation coefficient, chi-square test and average relative errors, were applied to determine the best fit isotherm. The error analysis showed that the models with more than two parameters better described the picric acid sorption data compared to the two-parameter models. In particular, the Baudu equation provided the best model for the picric acid sorption data for both methods.

On iterative learning control for some distributed parameter system

  • Kim, Won-Cheol;Lee, Kwang-Soon;Kim, Arkadii-V.
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1994.10a
    • /
    • pp.319-323
    • /
    • 1994
  • In this paper, we discuss a design method of iterative learning control systems for parabolic linear distributed parameter systems(DPSs). First, we discuss some aspects of boundary control of the DPS, and then propose to employ the Karhunen-Loeve procedure to reduce the infinite dimensional problem to a low-order finite dimensional problem. An iterative learning control(ILC) for non-square transfer function matrix is introduced finally for the reduced order system.

  • PDF

Determination of Reactive Power Compensation Considering Large Disturbances for Power Flow Solvability in the Korean Power System

  • Seo, Sang-Soo;Kang, Sang-Gyun;Lee, Byong-Jun;Kim, Tae-Kyun;Song, Hwa-Chang
    • Journal of Electrical Engineering and Technology
    • /
    • v.6 no.2
    • /
    • pp.147-153
    • /
    • 2011
  • This paper proposes a methodology using a tool based on the branch-parameter continuation power flow (BCPF) in order to restore the power flow solvability in unsolvable contingencies. A specified contingency from a set of transmission line contingencies is modeled, considering the transient analysis and practice in the Korean power system. This tool traces a solution path that satisfies the power flow equations with respect to the variation of the branch parameter. At a critical point, in which the branch parameter can move on to a maximum value, a sensitivity analysis with a normal vector is performed to identify the most effective compensation. With the sensitivity information, the location of the reactive power compensation is determined and the effectiveness of the sensitivity information is verified to restore the solvability. In the simulation, the proposed framework is then applied to the Korean power system.

An Enhancement of Removing Noise Branches by Detecting Noise Blobs (잡영블랍 검출에 의한 잡영가지 제거 방법의 개선)

  • 김성옥;임은경;김민환
    • Journal of Korea Multimedia Society
    • /
    • v.6 no.3
    • /
    • pp.419-428
    • /
    • 2003
  • Several methods have been studied to prune the parasitic branches that cause unfortunately from thinning a shape to get its skeleton. We found that the symmetric path finding method was most efficient because it followed the boundary pixels of the shape just once. In this paper, its extended method is proposed to apply to removing the noise branches that protrude out of the boundary of a segmented or extracted shape in a given image. The proposed method can remove a noise branch with one-pixel width and also remove the noise branch that includes a round shape called a noise blob. The method uses a 4-8-directional boundary-following technique to determine symmetric paths and finds noise branches with noise blobs by detecting quasi-symmetric paths. Its time complexity is a linear function of the number of boundary pixels. Interactively selectable parameters are used to define various types of noise branches flexibly, which are the branch - size parameter and the blob-size parameter. Experimental results for a practical shape and various artificial shapes showed that the proposed method was very useful for simplifying the shapes.

  • PDF

On the Transition between Stable Steady States in a Model of Biochemical System with Positive Feedback

  • Kim, Cheol-Ju;Lee, Dong-Jae;Shin, Kook-Joe
    • Bulletin of the Korean Chemical Society
    • /
    • v.11 no.6
    • /
    • pp.557-560
    • /
    • 1990
  • The transition from one stable steady state branch to another stable steady state branch in a simple metabolic system with positive feedback is discussed with the aid of the bimodal Gaussian probability distribution method. Fluctuations lead to transitions from one stable steady state branch to the other, so that the bimodal Gaussian evolves to a new distribution. We also obtain the fractional occupancies in the two stable steady states in terms of a parameter characterizing conditions of the system.

Size-dependent buckling behaviour of FG annular/circular thick nanoplates with porosities resting on Kerr foundation based on new hyperbolic shear deformation theory

  • Sadoughifar, Amirmahmoud;Farhatnia, Fatemeh;Izadinia, Mohsen;Talaeetaba, Sayed Behzad
    • Structural Engineering and Mechanics
    • /
    • v.73 no.3
    • /
    • pp.225-238
    • /
    • 2020
  • This work treats the axisymmetric buckling of functionally graded (FG) porous annular/circular nanoplates based on modified couple stress theory (MCST). The nanoplate is located at the elastic medium which is simulated by Kerr foundation with two spring and one shear layer. The material properties of the porous FG nanostructure are assumed to vary through the nanoplate thickness based on power-law rule. Based on two variables refined plate theory, the governing equations are derived by utilizing Hamilton's principle. Applying generalized differential quadrature method (GDQM), the buckling load of the annular/circular nanoplates is obtained for different boundary conditions. The influences of different involved parameters such as boundary conditions, Kerr medium, material length scale parameter, geometrical parameters of the nanoplate, FG power index and porosity are demonstrated on the nonlinear buckling load of the annular/circular nanoplates. The results indicate that with increasing the porosity of the nanoplate, the nonlinear buckling load is decreased. In addition, with increasing the material length scale parameter to thickness ratio, the effect of spring constant of Kerr foundation on the buckling load becomes more prominent. The present results are compared with those available in the literature to validate the accuracy and reliability. A good agreement is observed between the two sets of the results.

Strain gradient theory for vibration analysis of embedded CNT-reinforced micro Mindlin cylindrical shells considering agglomeration effects

  • Tohidi, H.;Hosseini-Hashemi, S.H.;Maghsoudpour, A.;Etemadi, S.
    • Structural Engineering and Mechanics
    • /
    • v.62 no.5
    • /
    • pp.551-565
    • /
    • 2017
  • Based on the strain gradient theory (SGT), vibration analysis of an embedded micro cylindrical shell reinforced with agglomerated carbon nanotubes (CNTs) is investigated. The elastic medium is simulated by the orthotropic Pasternak foundation. The structure is subjected to magnetic field in the axial direction. For obtaining the equivalent material properties of structure and considering agglomeration effects, the Mori-Tanaka model is applied. The motion equations are derived on the basis of Mindlin cylindrical shell theory, energy method and Hamilton's principal. Differential quadrature method (DQM) is proposed to evaluate the frequency of system for different boundary conditions. The effects of different parameters such as CNTs volume percent, agglomeration of CNTs, elastic medium, magnetic field, boundary conditions, length to radius ratio and small scale parameter are shown on the frequency of the structure. The results indicate that the effect of CNTs agglomeration plays an important role in the frequency of system so that considering agglomeration leads to lower frequency. Furthermore, the frequency of structure increases with enhancing the small scale parameter.