• 제목/요약/키워드: Branch flow

검색결과 448건 처리시간 0.023초

T형 수평 및 수직 입구 분지관 내 냉매 2상 유동 특성 (Two-phase Flow Characteristics of Refrigerant in T-branch with Horizontal and Vertical Inlet Tube)

  • 태상진;조금남
    • 설비공학논문집
    • /
    • 제14권9호
    • /
    • pp.741-748
    • /
    • 2002
  • The present study investigated the two-phase flow characteristics of refrigerant R-22 in T-branch with horizontal and vertical inlet tube The key experimental parameters were the orientation of inlet and branch tubes (horizontal and vertical), diameter ratio of branch tube to inlet tube (1 and 0.61), inlet mass flux (200~500 kg/$m^2$s) and inlet quality (0.1~0.4). Predicted pressure profile agreed with the measured data within 25.4%. The flow distribution ratio decreased as the mass flux increased. The flow distribution ratio decreased by 12~25% as the tube diameter ratio decreased from 1 to 0.61, and decreased by 38~47% as the orientation of branch changed from horizontal to vertical upward for horizontal inlet tubes. As the orientation of inlet tube changed from horizontal to vertical upward for horizontal branch, the flow distribution ratio increased by 15~68%, but the quality in the branch tube decreased by 28~92% due to phase separation.

Two-Phase Flow Distribution and Phase Separation Through Both Horizontal and Vertical Branches

  • Tae, Sang-Jin;Keumnam Cho
    • Journal of Mechanical Science and Technology
    • /
    • 제17권8호
    • /
    • pp.1211-1218
    • /
    • 2003
  • The present study investigated two-phase flow distribution and phase separation of R-22 refrigerant through various types of branch tubes. The key experimental parameters were the orientation of inlet and branch tubes (horizontal and vertical), diameter ratio of branch tube to inlet tube (1 and 0.61), mass flux (200-500 kg/㎡s), and inlet quality (0.1-0.4). The predicted local pressure profile in the tube with junction was compared and generally agreed with the measured data. The local pressure profile within the pressure recovery region after the junction has to be carefully investigated for modeling the pressure drop through the branch. The equal flow distribution case can be found by adjusting the orientation of the inlet and branch tubes and the diameter ratio of the branch tube to the inlet tube. The T-junction with horizontal inlet and branch tubes showed the nearly equal phase distribution ratio. The quality at the branch tube varied from 0 to 1 as the orientation of the branch tube changed, while it varied within${\pm}$50% as the orientation of the inlet tube changed.

대구경 고압 T형 분기관의 지관 형상에 따른 내부 유동 영향성 해석 (A Study on Internal Flow Characteristics of T Branch using CFD Analysis)

  • 조철희;김명주;조석진;황수진
    • 한국수소및신에너지학회논문집
    • /
    • 제26권5호
    • /
    • pp.438-444
    • /
    • 2015
  • This study describes the effect of T branch shape on internal flow characteristics inside itself. Continuity and three-dimensional Reynolds-averaged Navier-Stokes equation have been used as governing equations for the numerical analysis. The T branch was modeled assuming that it is used for Alaska pipeline project which was planned to provide reliable transportation of natural gas from ANS to Alaska-Yukon border. Therefore the characteristics of T branch and operating condition of pipeline were from report of Alaska pipeline project. The nine T branch shapes were analyzed and the mass flow rate ratio between mainline and branch was assumed to be 0.95 : 0.05, 0.9 : 0.1, 0.85 : 0.15. The results shows that there are typical flow patterns in T branch and the shape of T branch makes some differences to the internal flow of branch rather than mainline.

감압용 배수탱크내의 분기형 증기분사기의 유동특성에 관한 연구 (A Study on Flow Characteristics of Branch Type Sparger in Drain Tank for Depressurization)

  • 김광추;박만흥;박경석
    • 설비공학논문집
    • /
    • 제13권5호
    • /
    • pp.356-367
    • /
    • 2001
  • A numerical analysis on branch type sparger in drain tank for depressurization is performed to investigate the flow characteristics due to the change of design factor. As the result of this study, sparger\\`s flow resistance coefficient(K) is 3.53 at the present design condition when engineering margin for surface roughness is considered as 20%, and flow ratio into branch pipe ($Q_s/Q_i$) is 0.41. The correlation for calculating flow resistance coefficients as design factor is presented. Flow resistance coefficient is increased as section area ratio of branch pipe for main pipe and outlet nozzle diameter of main pipe decreasing, but the effects of branch angle and inlet flow rate of main pipe are small. As the change rate of ($Q_s/Q_i$)becomes larger, the change rate of flow resistance coefficient increases. The rate of pressure loss has the largest change as section area ratio changing. The condition of maximum flow resistance in sparger is when the outlet nozzle diameter ratio of main pipe ($D_e/D_i$) is 0.167, the section area ratio ($A_s/A_i$) is 0.1 and the branch angle ($\alpha$) is 55^{\circ}$.

  • PDF

TELEMAC-2D모형을 이용한 개수로 분류흐름에 대한 수치모의 연구 (Numerical study of dividing open-channel flows at bifurcation channel using TELEMAC-2D)

  • 정대진;장창래;정관수
    • 한국수자원학회논문집
    • /
    • 제49권7호
    • /
    • pp.635-644
    • /
    • 2016
  • 본 연구에서는 2차원 수치모형을 이용하여 개수로 분류부에서 분류수로 폭과 유량비 변화에 따른 흐름특성을 파악하였다. 2차류 영향을 고려한 분류부 수치모의시 흐름분포를 실험결과에 더 정확하고 안정하게 모의가능하다. 분류수로내 통수능을 감소시키는 흐름분리구역과 2차류의 상호 작용에 의한 흐름정체 효과는 분류유량비를 감소시킨다. 분류부 상류 유입유량과 유속이 감소할수록 수로폭 변화에 따른 분류유량비 변화가 더 크다. 동일 하류단 경계조건에서 분류수로 폭을 감소시킬 때, 본류 하류부 프루우드 수-분류유량비 관계식의 변화율은 -2.4843~-2.6675로 유사하게 나타난다. 동일 분류유량비 조건에서 분류수로 폭이 감소할수록 수축계수는 증가하고, 흐름분리구역의 폭은 감소한다. 분류수로 폭을 증가시킬 경우 분류부 상류 유입유량이 적을수록, 그리고 분류부 상류 유입량을 증가시킬 경우 분류수로 폭이 좁을수록 흐름분리구역 폭 감소율이 더 크다. 동일 상류 유입유량 조건에서 분류수로 폭이 감소할수록 분류유량비, 흐름분리구역의 길이와 폭은 감소한다.

논 엘레멘트 믹서의 혼합 메커니즘에 관한 수치해석적 검토 (Numerical Analysis Study of the Mixing Mechanism of Non-element Mixer)

  • 유선호
    • 한국분무공학회지
    • /
    • 제20권1호
    • /
    • pp.1-6
    • /
    • 2015
  • Visualization of the mixing pattern in a non-element mixer was carried out using laser induced fluorescence(LIF) to evaluate characteristics of mixer consisting of the main flow pipe and branch flow pipes. The branch flows were injected periodically with the period $T_{in}$ normal to the main flow, and rhodamine B was mixed into the most upstream branch flow to visualize mixing pattern in the main flow pipe by LIF. The length of boundary line L of the LIF image was measured. In this study, a numerical analysis was performed to identify the mixing process of the non-element mixer, and the results were compared with experimental results. Each result was almost the same. When the number of branch flows is increased, the mixing pattern became complicated and was supposed to become chaotic. The length of boundary line L increased exponentially with an increase in the number of branch flows.

T-분지관이 부착된 벤튜리관의 유동특성과 응축수 유입에 대한 수치해석 연구 (A numerical study on the flow characteristics and condensed water inflow in the Venturi tube with T-branch tube)

  • 김승일;박상희;황정규
    • 한국산업융합학회 논문집
    • /
    • 제22권2호
    • /
    • pp.173-181
    • /
    • 2019
  • This study was carried out numerically to investigate the flow characteristics in the Venturi tube with $90^{\circ}$ T-branch tube and the inflow of condensed water into the Venturi tube from the branch tube. In this study, the diameter of the branch tube(1, 2, 3mm) and the neck diameter of the Venturi tube(0.3, 0.9, 1.5mm) were varied. The flow rate of the water at the Venturi tube inlet is 80cc/min and the water temperature is 288K. The condensed water temperature at the branch tube inlet is 355K. It was found that the velocity and pressure of the fluid near the branch point in the Venturi tube were more dependent on the diameter of the Venturi tube than the diameter of the branch tube. The temperature of the mixed water at the exit of the Venturi tube was the highest when the Venturi tube's neck diameter is 0.9mm and the branch tube diameter is 2mm. This means that the condensed water is flowing well through the branch tube.

원자로배수탱크내 Sparger에 대한 유동특성 및 최적설계 (Flow Characteristics and Optimal Design for RDT Sparger)

  • 김광추;박만홍;박경식;이종원
    • 대한기계학회논문집B
    • /
    • 제23권11호
    • /
    • pp.1390-1398
    • /
    • 1999
  • A numerical analysis for ROT sparger of PWR(Pressurized Water Reactor) is carried out. Computation is performed to investigate the flow characteristics as the change of design factor. As the result of this study, RDT sparger's flow resistance coefficient is K=3.53 at the present design condition if engineering mar&in is considered with 20%, and flow ratio into branch pipe is $Q_s/Q_i=0.41$. Velocity distribution at exit is not uniform because of separation in branch pipe. In the change of inlet flow rate and section area ratio of branch pipe for main pipe, flow resistance coefficient is increased as $Q_s/Q_i$ decreasing, but in the change of branch angle and outlet nozzle diameter of main pipe, flow resistance coefficient is decreased as $Q_s/Q_i$ decreasing. As the change rate of $Q_s/Q_i$ is the larger, the change rate of flow resistance coefficient is the larger. The change rate of pressure loss is the largest change as section area ratio changing. The optimal design condition of sparger is estimated as the outlet nozzle diameter ratio of main pipe is $D_s/D_i=0.333$, the section area ratio is $A_s/A_i=0.2$ and the branch angle is ${\alpha}=55^{\circ}$.

협착이 발생된 분기관내 비뉴턴유체의 유동특성 연구 (Flow Characteristics of Non-Newtonian Fluids in the Stenosed Branch Tubes)

  • 서상호;유상신;노형운
    • 설비공학논문집
    • /
    • 제8권3호
    • /
    • pp.307-316
    • /
    • 1996
  • The objective of present study is to obtain information on the stenosis effects in the branch tubes for industrial piping system and atherogenesis processing in human arteries. Numerical solutions for flows of Newtonian and non-Newtonian fluids in the branch tubes are obtained by the finite volume method. Centerline velocity and pressure along the bifurcated tubes for water, blood and aqueous Separan AP-273 solution are computed and the numerical results of blood and the Separan solution are compared with those of water. Flow phenomena in the stenosed branch tubes are discussed extensively and predicted effectively. The effects of stenosis on the pressure loss coefficients are determined.

  • PDF

Effect of Flow Direction on Two-Phase Flow Distribution of Refrigerants at a T-Junction

  • Tae Sang-Jin;Cho Keum-Nam
    • Journal of Mechanical Science and Technology
    • /
    • 제20권5호
    • /
    • pp.717-727
    • /
    • 2006
  • The present study experimentally investigated the effect of flow direction and other flow parameters on two-phase flow distribution of refrigerants at a T-junction, and also suggested a prediction model for refrigerant in a T-junction by modifying previous model for air-water flow. R-22, R-134a, and R-410A were used as test refrigerants. As geometric parameters, the direction of the inlet or branch tube and the tube diameter ratio of branch to inlet tube were chosen. The measured data were compared with the values predicted by the models developed for air-water or steam-water mixture in the literature. We propose a modified model for application to the reduced T-junction and vertical tube orientation. Among the geometric parameters, the branch tube direction showed the biggest sensitivity to the mass flow rate ratio for the gas phase, while the inlet quality showed the biggest sensitivity to the mass flow rate ratio among the inlet flow parameters.