• Title/Summary/Keyword: Branch And Bound Algorithm

Search Result 191, Processing Time 0.022 seconds

A study on shortest problem between specified nodes with multiple travel time (다수개의 여행시간이 주어진 경우의 지정된 마디간의 최단경로 문제)

  • 이명석;박순달
    • Korean Management Science Review
    • /
    • v.7 no.2
    • /
    • pp.51-57
    • /
    • 1990
  • The purpose of this thesis is to find the shortest path between two nodes on an acyclic network where the arc costs are determined by the starting time at the starting node of the arc. A branch and bound method for optimal solutions and a heuristic method is developed. In heuristic method Dijkstra algorithm is modified to maintain the minimum arrival times of maximum informations in the each time period at each node and is updated by the result with the insertion technique. Expermetal results among two methods are presented with regard to run time and solution qualities.

  • PDF

The redundancy for system reliability optimization (시스템 신뢰도 최적화를 위한 중복 설계)

  • 김진철;오영환;조용구
    • Journal of the Korean Institute of Telematics and Electronics S
    • /
    • v.34S no.9
    • /
    • pp.13-22
    • /
    • 1997
  • In this paper, we supposed allocating the number of redundancies as the model of 0-1 knapsack problem and formulated the problem to maximize the systems reliability for a mission length. The formulated problem reduced the problem size using the modified branch and bound algorithm by Lagrangian relaxation. The subgradient method can optimize the set of solution. To verify the proposed method, we presented the improved resutls of the systems composed of two and ten component groups as the commparison of those in other papers.

  • PDF

An Efficient Algorithm for the Generalized Multiple Choice Linear Knapsack Problem (일반 다중선택 선형배낭문제에 대한 효율적인 해법)

  • Won, J.Y.;Chung, S.J.
    • Journal of the Korean Operations Research and Management Science Society
    • /
    • v.15 no.2
    • /
    • pp.33-44
    • /
    • 1990
  • An efficient algorithm is developed for the linear programming relaxation of generalized multiple choice knaspack problem. The generalized multiple choice knaspack problem is an extension of the multiple choice knaspack problem whose relaxed LP problem has been studied extensively. In the worst case, the computational coimplexity of the proposed algorithm is of order 0(n. $n_{max}$)$^{2}$), where n is the total number of variables and $n_{max}$ denotes the cardinality of the largest multiple choice set. The algorithm can be easily embedded in a branch-and-bound procedure for the generalized multiple choice knapsack problem. A numerical example is presented and computational aspects are discussed.sed.

  • PDF

Algorithm or Parallel Computation for a multi-CPU controlled Robot Manipulator (복수의 CPU로 제어되는 매니퓰레이터의 병렬계산 알고리즘)

  • Woo, Kwang-Bang;Kim, Hyun-Ki;Choi, Gyoo-Suck
    • Proceedings of the KIEE Conference
    • /
    • 1987.07a
    • /
    • pp.288-292
    • /
    • 1987
  • The purpose of this paper is to develope the parallel computation algorithm that enables it to minimize the completion tine of computation execution of the entire subtasks, under the constraints of the series-parallel precedence relation in each subtask. The developed algorithm was applied to the control of a robot manipulator functioned by multi-CPU's and to obtain the minimum time schedule so that real time control may be achieved. The completion time of computation execution was minimized by applying "Variable" Branch and Bound algorithm which was developed In this paper in determining the optimum ordered schedule for each CPU.

  • PDF

A New Ship Scheduling Set Packing Model Considering Limited Risk

  • Kim, Si-Hwa;Hwang, Hee-Su
    • Journal of Navigation and Port Research
    • /
    • v.30 no.7
    • /
    • pp.561-566
    • /
    • 2006
  • In this paper, we propose a new ship scheduling set packing model considering limited risk or variance. The set packing model is used in many applications, such as vehicle routing, crew scheduling, ship scheduling, cutting stock and so on. As long as the ship scheduling is concerned, there exits many unknown external factors such as machine breakdown, climate change and transportation cost fluctuation. However, existing ship scheduling models have not considered those factors apparently. We use a quadratic set packing model to limit the variance of expected cost of ship scheduling problems under stochastic spot rates. Set problems are NP-complete, and additional quadratic constraint makes the problems much harder. We implement Kelley's cutting plane method to replace the hard quadratic constraint by many linear constrains and use branch-and-bound algorithm to get the optimal integral solution. Some meaningful computational results and comments are provided.

A Development of Optimum Operation Models for Express-Rail Systems (급행열차 도입을 통한 최적운행방안 수립에 관한 연구 - 수도권 광역 도시철도를 중심으로 -)

  • Park, Jeong-Soo;Lee, Hoon-Hee;Won, Jai-Mu
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.26 no.4D
    • /
    • pp.679-686
    • /
    • 2006
  • Recently, the city railway in the Seoul Metropolitan Area (SMA) has offered a low quality of service as a passage time, because it was operated slowly. So, the people who live in modern society are not satisfied about passage time, therefore, this study tried to make that the subway in the SMA becomes a more functional and effective wide-area-transportation-network through an express train introduction's method which examined cases from abroad and current system. and then presented how express train could be applied to current system. In a case study, We used the An-San Line and Su-In Line as a examples and developed a schedule which can minimize the delaying time of subway by using Branch & Bound Algorithm. The train operational plan was loaded to consider a railroad siding, Obtained site, and the dispatch interval(three to ten minutes) for the express and local lines and finally, We presented an alternative operational plan which made by those factors.

A Branch and Bound Algorithm to Find a Routing Tree Having Minimum Wiener Index in Sensor Networks with High Mobile Base Node (베이스 노드의 이동성이 큰 센서 네트워크 환경에서 최소 Wiener 수를 갖는 라우팅 트리를 위한 분기한정 알고리즘)

  • Kang, Seung-Ho;Kim, Ki-Young;Lee, Woo-Young;Song, Iick-Ho;Jung, Min-A;Lee, Seong-Ro
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.35 no.5A
    • /
    • pp.466-473
    • /
    • 2010
  • Several protocols which are based on tree topology to guarantee the important metrics such as energy efficiency in sensor networks have been proposed. However, studies on the effect of topologies in sensor networks, where base node has a high mobility, are very few. In this paper, we propose a minimum Wiener index tree as a suitable topology to the wireless sensor networks with high mobile base node. The minimum Wiener index spanning tree problem which aims to find a tree with minimum Wiener index from a given weighted graph was proved to be NP-hard. We designed a branch and bound algorithm for this problem. To evaluate the performance of proposed tree, the comparisons with minimum spanning tree in terms of transmission distance, energy consumption during one round, and network lifetime was performed by simulations. Our proposed tree outperformed in transmission distance and energy efficiency but underperformed in lifetime.

A Heuristic Algorithm for the Two-Dimensional Bin Packing Problem Using a Fitness Function (적합성 함수를 이용한 2차원 저장소 적재 문제의 휴리스틱 알고리즘)

  • Yon, Yong-Ho;Lee, Sun-Young;Lee, Jong-Yun
    • The KIPS Transactions:PartB
    • /
    • v.16B no.5
    • /
    • pp.403-410
    • /
    • 2009
  • The two-dimensional bin packing problem(2D-BPP) has been known to be NP-hard, and it is difficult to solve the problem exactly. Many approximation methods, such as genetic algorithm, simulated annealing and tabu search etc, have been also proposed to gain better solutions. However, the existing approximation algorithms, such as branch-and-bound and tabu search, have shown the low efficiency and the long execution time due to a large of iterations. To solve these problems, we first define the fitness function to simplify and increase the utility of algorithm. The function decides whether an item is packed into a given area, and as an important information for a packing strategy, the number of subarea that can accommodate a given item is obtained from the variant of the fitness function. Then we present a heuristic algorithm BF for 2D bin packing, constructed by the fitness function and subarea. Finally, the effectiveness of the proposed algorithm will be expressed by the comparison experiments with the heuristic and the metaheuristic of the literatures. As comparing with existing heuristic algorithms and metaheuristic algorithms, it has been found that the packing rate of algorithm BP is the same as 97% as existing heuristic algorithms, FFF and FBS, or better than them. Also, it has been shown the same as 86% as tabu search algorithm or better.

A Study on Flow Shop Scheduling Problems under Fuzzy Environment (퍼지 환경하에서의 FLOW SHOP 일정계획 방법에 관한 연구)

  • 김정자;이상완;박병주
    • Journal of the Korean Operations Research and Management Science Society
    • /
    • v.13 no.2
    • /
    • pp.163-163
    • /
    • 1988
  • This research shows that fuzzy set theory can be useful in modeling and solving flow shop scheduling problems with uncertain processing times and illustrates a method for solving job sequencing problem which the opinions of experts disagree in each processing time. In this study, FCDS (Fuzzified Campbell-Dudek-Smith) algorithm and FNEH (Fuzzified Nawaz-Enscope-Ham) algorithm are proposed to improve the fuzzified Branch & Bound algorithm that requires long run-time and computational complexities to find the optimal sequence. These proposed algorithms are also designed to treat opinions of experts. In this paper, Fuzzy processing times are expressed as triangular fuzzy numbers and comparison method use Lee-Li method and ranking method based on the dominance property. On the basis of the proposed method, an example is presented.

A New Exact Algorithm Using the Stair Structure for the Pallet Loading Problem (계단 구조를 이용한 팔레트적재문제의 새로운 해법)

  • Ji, Yeong-Geun;Jin, Go-Whan
    • Journal of the Korean Operations Research and Management Science Society
    • /
    • v.34 no.3
    • /
    • pp.43-53
    • /
    • 2009
  • The pallet loading problem(PLP) requires the best orthogonal layout that loads the maximum number of identical boxes(small rectangle) onto a pallet(large rectangle). Since the high pallet utilization saves the distribution and storage costs, many heuristic and exact algorithms have been developed so far. Martins and Dell have found the optimal layouts for the all PLPs less than or equal to 100 boxes except for only 5 problems in their recent research. This paper defines the 'stair structure' and proposes a new exact algorithm applying it. In order to show the priority of the proposed algorithm, computational results are compared to previous algorithms and the optimal layouts for the S unsolved problems are given.