• Title/Summary/Keyword: Braking energy

Search Result 221, Processing Time 0.029 seconds

Development of Regenerative Braking Control Algorithm for In-wheel Motor Type Fuel Cell Electric Vehicles Considering Vehicle Stability (차량 안정성을 고려한 인휠모터 방식 연료전지 전기자동차용 회생제동 알고리즘 개발)

  • Yang, D.H.;Park, J.H.;Hwang, S.H.
    • Transactions of The Korea Fluid Power Systems Society
    • /
    • v.7 no.2
    • /
    • pp.7-12
    • /
    • 2010
  • In these days, the researches about hybrid and fuel cell electric vehicles are actively performed due to the environmental contamination and resource exhaust. Specially, the technology of regenerative braking, converting heat energy to electric energy, is one of the most effective technologies to improve fuel economy. This paper developed a regenerative braking control algorithm that is considered vehicle stability. The vehicle has a inline motor at front drive shaft and has a EHB(Electo-hydraulic Brake) system. The control logic and regenerative braking control algorithm are analyzed by MATLAB/Simulink. The vehicle model is carried out by CarSim and the driving simulation is performed by using co-simulation of CarSim and MATLAB/Simulink. From the simulation results, a regenerative braking control algorithm is verified to improve the vehicle stability as well as fuel economy.

  • PDF

Maximum Power Recovery of Regenerative Braking in Electric Vehicles Based on Switched Reluctance Drive

  • Namazi, Mohammad Masoud;Saghaiannejad, Seyed Morteza;Rashidi, Amir;Ahn, Jin-Woo
    • Journal of Electrical Engineering and Technology
    • /
    • v.13 no.2
    • /
    • pp.800-811
    • /
    • 2018
  • This paper presents a regenerative braking control scheme for Switched Reluctance Machine (SRM) drive in Electric Vehicles (EVs). The main purpose is to maximize the recovered energy during battery charging by taking into account the nonlinear physical characteristics of the Switched Reluctance Machine. The proposed regenerative braking method employs the back-EMF in the generation process as a complicated position-dependent voltage source. The proposed maximum power recovery (MPR) operation of the regenerative braking is first based on the maximization of the extracted power from the machine and then the maximization of the power transferred to the battery. The maximum power extraction (MPE) from SRM is based on maximizing the energy conversion ratio by the calculation of the optimum PWM switching duty cycle, turn-on, and turn-off angles. By using the impedance matching theorem that allows the maximum power transfer (MPT) of the MPE, the proposed MPR is achieved. The parametric averaged value modeling of the machine phase currents in the chopping control mode is used for MPR realization. By following this model, a nonlinear equivalent input resistance is derived for the battery internal resistance matching. The effectiveness of the proposed regenerative braking method is demonstrated through simulation results and experimental implementation.

The Test Study on Driving Efficiency Improvement of Two-wheeled Electric Vehicle according to Regenerative Braking (전기 동력 이륜차의 회생제동에 따른 구동효율 향상에 관한 평가 연구)

  • Cho, Suyeon;Seo, Donghyun;Park, Junsung;Shin, Waegyeong
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.24 no.6
    • /
    • pp.635-641
    • /
    • 2016
  • Regenerative braking performance of an electrically powered vehicle is closely related to driving distance per battery charge. An electric vehicle uses appropriate amounts of mechanical braking force and electromagnetic regenerative braking force to recover energy and increase driving efficiency. In particular, when it drives on a downhill road, energy recovery rate is maximized through regenerative braking during coasting based on the mass inertia of the vehicle. Since an electric two-wheeled vehicle covered in this paper is lighter than an electric four-wheeled vehicle, the improvement of its driving distance per battery charge through regenerative braking is different from an electric four-wheeled vehicle. This study compared the driving characteristics of an electric two-wheeled vehicle based on regenerative braking. Two driving test modes were simulated with a chassis dynamometer system. By analyzing the measurement of a chassis dynamometer, the driving characteristics of a two-wheel electric vehicle, such as driving efficiency, were analyzed. In addition, test results were reviewed to draw the limitations of conventional test methods for regenerative braking performance of an electric two-wheel vehicle.

A Study on Regenerative Braking of Electric Vehicle (전기자동차 회생제동에 관한 연구)

  • Jeon, Beom-Jin;Sul, Seung-Ki
    • Proceedings of the KIEE Conference
    • /
    • 1995.11a
    • /
    • pp.290-292
    • /
    • 1995
  • In this paper, the regenerative braking control system for 4 WD Electric Vehicle (EV) is proposed. Many studies on efficient drive of EV are being done to prolong the one charge distance. By using the regenerative braking (REGEN), the resulting EV system has following advantages : a) battery is recharged with the mechanical energy of EV, b) the running load can be reduced, and consequently the efficiency can be increased. The problem of REGEN that the power acceptance ability of battery is limited can be solved by controlling regenerative braking torque. The proposed control system has following characteristics. : a) It controls regenerative power by varying mechanical braking torque. b) It controls mechanical braking torque using load torque observer. c) It controls the regenerative braking torque independently. The control scheme and simulation results are presented for the experimental car.

  • PDF

Full Electric Vehicle Power System simulation with regenerative braking (회생 제동을 사용하는 전기자동차 시스템 구성 설계)

  • Jin, Young-Goun;Kim, Eou-Jung
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2010.05a
    • /
    • pp.365-368
    • /
    • 2010
  • Full Electric Vehicle needs regenerative braking system by it's limitation of energy storage capacity. In this study, we suggest the system trade-off strategy between regenerative braking system with ultra capacitor and vichile enegry efficency. Simulation with the UDDS scheduling show the relations of energy storage sizing, efficiency of regenerative braking system and ultra capacitor sizing.

  • PDF

Performance Analysis of the Eddy Current Braker with Multi-layer Rotor Considering Constant Braking Torque

  • Kim, Cherl-Jin;Lee, Kwan-Yong;Han, Kyoung-Hee;Beak, Soo-Hyun
    • KIEE International Transaction on Electrical Machinery and Energy Conversion Systems
    • /
    • v.4B no.2
    • /
    • pp.59-64
    • /
    • 2004
  • Study of an accurate and robust braking control method is required as a technical improvement to the servo system. In particular, the braker exhibiting constant braking performance under speed variation conditions of the prime mover needs to be investigated. In this paper, the braking torque of the eddy current braker between the electromagnet stator and rotating disk is analyzed. The torque-speed characteristics and accurate disk construction are represented. From the computer simulation results, it was found that eddy current braking torque is linear or approximately constant over the desired speed range depending on the rotor material, disk construction, pole number and pole displacement of the stator. These relations are confirmed by experimental results.

A Study on Electromagnetic Retarder's Power Recovery System and Regenerating Voltage Control (전자기형 리타더의 전력회수장치 및 회생전압제어에 대한 연구)

  • Jung, Sung-Chul;Ko, Jong-Sun
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.66 no.8
    • /
    • pp.1207-1214
    • /
    • 2017
  • In the case of frequent braking, when driving downhill or long distance, conventional brakes using friction are problematic in braking safety due to brake rupture and fading phenomenon. Therefore auxiliary brakes is essential for heavy vehicles. And several research has been actively conducted to improve energy efficiency by regenerating mechanical energy into electric energy when the vehicles brake. In this paper, a voltage control method is utilized to recover the electric energy generated in the electromagnetic retarder instead of the eddy current. To regenerate the braking energy into the electrical energy, a resonant L-C circuit is configured in the retarder. The retarder can be modeled as self-excited induction generator due to its operating principle. The driving conditions according to the retarder's parameters are made into 3-D maps. Also, the voltage of the resonant circuit changing depending on the driving pulse applied to the FET was analyzed. For the control of this voltage, we proposed an algorithm using the PI controller. The controlled voltage is converted by a 3-phase AC/DC converter and then charged to a battery inside the heavy vehicles through a DC/DC converter. Electromagnetic retarder and its controller are validated using Matlab Simulink. We also demonstrate the voltage controller through the actual M-G set experiment.

Characteristic Test of the Electro Mechanical Brake Actuator for Urban Railway Vehicles (도시철도용 전기기계식 제동장치의 특성시험)

  • Kim, Min Soo;Oh, Seh Chan;Kwon, Seok Jin
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.33 no.7
    • /
    • pp.535-540
    • /
    • 2016
  • The braking device in railway vehicles decelerates or stops the train by dissipating the thermal energy converted from kinetic energy into the air. Therefore, the brake system is crucial for safety. In this paper, we performed a study on an electromechanical brake actuator using an electrical motor as an alternative to pneumatic air cylinders to reduce the idle running time in braking, which subsequently increases braking distance, and to ensure reliable response characteristics. Especially, to analyze the response characteristics of the electromechanical brake actuator, we measure the delay time, response time and power consumption compared to the air cylinder. It is confirmed that the electromechanical brake actuator can reduce reaction time by 0.1 seconds (Braking Action) and 0.46 seconds (Brake Release) compared to the air cylinder.

Design and Control of Braking Chopper Circuit for Ventilation Inverter of Traction Control System (고속전철용 추진제어장치의 냉각용 인버터를 위한 제동초퍼 회로 설계 및 제어)

  • Cho, Sung-Joon
    • Proceedings of the KIPE Conference
    • /
    • 2011.07a
    • /
    • pp.314-315
    • /
    • 2011
  • This paper introduces the design and control method of braking chopper circuit which can supply input power to ventilation inverter of traction control system. The DC input voltage from auxiliary block (static inverter) is normally used as an input of ventilation inverter. It converts DC input to AC output voltage to drive cooling fans for traction control system and traction motors. The electrical braking force is very important for high speed train to guarantee safety even though the train is running in the dead section where the pantograph voltage is not supplied. When the high speed train decelerate speed in dead section, the regenerative energy is dissipated by braking resistor. This paper proposed the braking chopper control method to implement rheostatic braking function and the appropriate chopper circuit for supplying voltage source to ventilation inverter during rheostatic braking mode. The proposed chopper circuit makes it possible for traction control system to regenerate power continuously regardless of the existence of pantograph voltage. The feasibility of proposed braking chopper control and circuit were proven by inertia load test and actual train field test.

  • PDF

Electromagnetic Retarder's Power Recovery Device and Voltage Control (전자기형 리타더의 전력회수장치 및 전압제어)

  • Jung, Sung-Chul;Yoon, In-Sik;Ko, Jong-Sun
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.21 no.5
    • /
    • pp.396-403
    • /
    • 2016
  • Usually, large-sized buses and trucks have a very high load. In addition, frequent braking during downhill or long-distance driving, causes the conventional method using the brake friction to have a problem in safety because of brake fade and brake burst phenomenon. Auxiliary brakes dividing the braking load is essential. Hence, environment-friendly auxiliary brakes, such as contactless brake rather than the engine auxiliary brake system are needed. A study aimed at improving the energy efficiency by recharging electric energy with changing mechanical to electrical energy that occurs when braking is actively in progress. In this paper, the voltage control method is utilized to recover the electric energy generated in the electromagnetic retarder instead of the eddy current. To regenerate the braking energy into the electrical energy, the resonant L-C circuit is configured in the retarder. The voltage generated in the retarder is simply modeled as a transformer. However, retarder voltage control in this paper is simulated by modeling the induction generator because this induction generator modeling is more practical than transformer modeling. The changes in the voltage of the resonance circuit, which depends on the switch pulse duration of the control device, were analyzed. A PI controller algorithm to control this voltage is proposed. The feasibility of modeling retarder and voltage controller are shown by using MATLAB Simulink in this paper.