• Title/Summary/Keyword: Braking Simulation

Search Result 270, Processing Time 0.022 seconds

A Study on Regenerative Braking for a Parallel Hybrid Electric Vehicle

  • Jang, Seong-Uk;Ye, Hun;Kim, Cheol-Su;Kim, Hyeon-Su
    • Journal of Mechanical Science and Technology
    • /
    • v.15 no.11
    • /
    • pp.1490-1498
    • /
    • 2001
  • In this paper, a regenerative braking algorithm is presented and performance of a hybrid electric vehicle (HEV) is investigated. The regenerative braking algorithm calculates the available regenera tive braking torque by considering the motor characteristics, the battery SOC and the CVT speed ratio. When the regenerative braking and the friction braking are applied simultaneously, the friction braking torque corresponding to the regenerative braking should be reduced by decreasing the hydraulic pressure at the front wheel. To implement the regenerative braking algorithm, a hydraulic braking module is designed. In addition, the HEV powertrain models including the internal combustion engine, electric motor, battery, CVT and the regenerative braking system are obtained using AMESim, and the regenerative braking performance is investigated by the simulation. Simulation results show that the proposed regenerative braking algorithm contributes to increasing the battery SOC which results in the improved fuel economy. To verify the regenerative braking algorithm, an experimental study is performed. It is found from the experimental results that the regenerative braking hydraulic module developed in this study generates the desired front wheel hydraulic pressure specified by the regenerative braking control algorithm.

  • PDF

Corner Braking Test and Simulation for Development of VDC System (VDC장치 개발을 위한 코너제동 실험 및 시뮬레이션)

  • 이창노;박혁성;김영관
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.11 no.2
    • /
    • pp.211-216
    • /
    • 2003
  • The influence of braking force generated by one tire on vehicle dynamics was investigated by simulation and ground test. A 8 d. o. f vehicle model was developed for simulation. And a special device to apply brake pressure to individual wheel was built for vehicle test. As a result of corner braking test on straight driving, the dynamic responses such as yawrate, lateral acceleration and roll angle were produced in the vehicle, which were in a good agreement to the simulation results. This shows that comer braking used in VDC system can control vehicle dynamics to improve controllability and directional stability.

Development of Real-time Simulator for Vehicle Electric Brake System (차량 전자 제동 시스템을 위한 실시간 시뮬레이터 개발)

  • Cheon, Se Young;Choi, Seong Woong;Yang, Soon Yong
    • Journal of Drive and Control
    • /
    • v.16 no.1
    • /
    • pp.22-28
    • /
    • 2019
  • This paper develops ABS braking real - time simulator to develop vehicle braking system by simulation. Recently, real-time simulation is widely used in the development of vehicles to decrease development time. In the field of electronic braking, real-time simulation is actively underway. In order to simulate electronic braking model in real time, a vehicle model, a hydraulic model, and a control S/W model are required. These models must be calculated in one platform. Therefore, in this paper, a vehicle model composed of CarSim and a hydraulic model composed of SimulationX using S/W in actual ABS controller was developed as a Simulink model base and linked with Matlab real time model. Using this real-time model, design effects of the electronic braking controller were simulated according to road surface condition to verify its operability.

A Study on the Techniques of Simulation Test in Automotive Braking System (자동차 제동장치의 시뮬레이션 시험 기법에 관한 연구)

  • 민규식;김형섭
    • Journal of the Korean Society of Safety
    • /
    • v.8 no.2
    • /
    • pp.23-29
    • /
    • 1993
  • In this study, the method of deciding simulation test conditions is developed by computer program compared to actual vehicle test as accurately as possible. These results of analytical test conditions are conformed by simulation test using the brake dynamometer by comparison with test results of actual vehicle. Results of simulation test by these analytical results show good agreement with the vehicle test results. The analytical simulation test conditions provide the input data to brake dynamometer which follows : - each test inertia corresponding to braking deceleration - test condition of input control : brake line pressure - test condition of output control : braking torque

  • PDF

Development of Regenerative Braking Control Algorithm for In-wheel Motor Type Fuel Cell Electric Vehicles Considering Vehicle Stability (차량 안정성을 고려한 인휠모터 방식 연료전지 전기자동차용 회생제동 알고리즘 개발)

  • Yang, D.H.;Park, J.H.;Hwang, S.H.
    • Transactions of The Korea Fluid Power Systems Society
    • /
    • v.7 no.2
    • /
    • pp.7-12
    • /
    • 2010
  • In these days, the researches about hybrid and fuel cell electric vehicles are actively performed due to the environmental contamination and resource exhaust. Specially, the technology of regenerative braking, converting heat energy to electric energy, is one of the most effective technologies to improve fuel economy. This paper developed a regenerative braking control algorithm that is considered vehicle stability. The vehicle has a inline motor at front drive shaft and has a EHB(Electo-hydraulic Brake) system. The control logic and regenerative braking control algorithm are analyzed by MATLAB/Simulink. The vehicle model is carried out by CarSim and the driving simulation is performed by using co-simulation of CarSim and MATLAB/Simulink. From the simulation results, a regenerative braking control algorithm is verified to improve the vehicle stability as well as fuel economy.

  • PDF

A Simulation Program for the Braking Characteristics of Tractor-Semitrailer Vehicle (Tractor-Semitrailer 차량의 제동특성 프로그램 개발)

  • 서명원;박윤기;권성진;양승환;박병철
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.9 no.2
    • /
    • pp.152-167
    • /
    • 2001
  • Recently safety systems for the commercial vehicle have been rapidly developed. However, we still have many problems in the vehicle stability and the braking performance. Especially, a commercial vehicle may meet a dangerous braking condition when the vehicle is lightly loaded or empty and when the road is wet or slippery. Under these conditions, the truck can spin out or the tractor can jackknife or the trailer can swing out. To design the air brake system for the commercial vehicle, since the air brake system has many design variables, there must have been intensive researches on a method how to prevent dynamic instability and how to maximize the vehicle deceleration. In this study, mathematical models about the tractor-semitrailer and the air brake system including an ABS controller have been constructed for computer simulation. Also, simple examples are applied to show the usefulness of the program. Designers can use this simulation program for understanding the braking characteristics such as trajectory, braking distance, longitudinal deceleration, lateral deceleration, and yaw rate on various road conditions.

  • PDF

Braking Torque Closed-Loop Control of Switched Reluctance Machines for Electric Vehicles

  • Cheng, He;Chen, Hao;Yang, Zhou;Huang, Weilong
    • Journal of Power Electronics
    • /
    • v.15 no.2
    • /
    • pp.469-478
    • /
    • 2015
  • In order to promote the application of switched reluctance machines (SRM) in electric vehicles (EVs), the braking torque closed-loop control of a SRM is proposed. A hysteresis current regulator with the soft chopping mode is employed to reduce the switching frequency and switching loss. A torque estimator is designed to estimate the braking torque online and to achieve braking torque feedback. A feed-forward plus saturation compensation torque regulator is designed to decrease the dynamic response time and to improve the steady-state accuracy of the braking torque. The turn-on and turn-off angles are optimized by a genetic algorithm (GA) to reduce the braking torque ripple and to improve the braking energy feedback efficiency. Finally, a simulation model and an experimental platform are built. The simulation and experimental results demonstrate the correctness of the proposed control strategy.

Analysis of Dynamic Characteristics of a Vehicle Undergoing Turning and Braking (선회중 제동을 고려한 차량의 동특성 연구)

  • Kang, J.S.;Yun, J.R.;Min, H.K.;Lee, J.M.
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.3 no.3
    • /
    • pp.109-118
    • /
    • 1995
  • This paper presents a mathematical vehicle model to analyze the dynamic characteristics of a vehicle undergoing braking in a turn. Two kinds of field tests, braking in a steady state turn and braking in a J-turn are performed. Computer simulation results are compared with test results and the braking effect on a vehicle cornering behavior is examined. Also, sensitivity analysis is applied to determine the effect of design parameter changes on the response of vehicle dynamic system.

  • PDF

HILS of the Braking System of a High Speed Train (고속전철 제동시스템의 HILS)

  • Hwang, Won-Ju;Kang, Chul-Goo
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.7 no.5
    • /
    • pp.432-437
    • /
    • 2001
  • Korea High Speed Train(KHST) is supposed to run up 350km/h, in which the braking system has a crucial role for the safety of the train. In the design st데 of the braking system, its very hard to ac-quire information data for design guidelines. A HILS(Hardware-In-the-Loop Simulation) system can be used to get design data which could simulate the braking system of the real train in real-time. In this paper, cars are modelled including car dynamics, brake blending algorithms, pneumatic actuator dynamics, the models of each braking devices, adhesive coefficients, and soon. Real-time braking time, distance, and other design parameters are simulated using a DSP board and C language which shows the validity of the proposed method.

  • PDF

2D Modeling and Brake System Simulation of a Train (철도차량 2D 모델링 및 제동시스템 시뮬레이션)

  • Kang, Chul-Goo;Kim, Ho-Yeon;Goo, Byeong-Choon
    • Proceedings of the KSME Conference
    • /
    • 2008.11a
    • /
    • pp.811-816
    • /
    • 2008
  • Train dynamics affects significantly safe and efficient operation of a train, especially during traction or braking period. Train dynamics is intrinsically complex due to many DOF motions in a three-dimensional space, and its behavior during the braking stage is too complex to understand and design an effective braking logic of the train. In this paper, we present a two-dimensional model with three DOF motion in a longitudinal, vertical, and pitch direction for the Hanvit 200 tilting train, which is efficient to analyze a braking performance. Furthermore, we analyze the braking logic and simulate the braking process of the Hanvit 200 tilting train using Simulink.

  • PDF