• Title/Summary/Keyword: Braking Energy

Search Result 222, Processing Time 0.017 seconds

An Analysis of Idling Stop Time Using Real On-road Driving Data (실도로 주행 데이터를 이용한 공회전 정지 시간의 분석)

  • Hong, Seong-Tae;Lee, Beom-Ho;Lee, Dae-Yeop;Sim, Mu-Gyeong;Im, Jae-Myeong
    • Journal of Korean Society of Transportation
    • /
    • v.28 no.1
    • /
    • pp.25-38
    • /
    • 2010
  • In this study, the real on-road driving data were analyzed to draw the various characteristics related to idling of vehicles. The results revealed that the average idling time of a city bus corresponds to 30.9% of the total daily driving time. Among this, for about 21.6% of the total daily driving time, it is available that an engine can be halted while the vehicle stops. It is a daytime when the portion of time, for which idling stop is available, is peak. Due to idling stop, an increase of turnaround was not found throughout this analysis. When a city bus stops at a traffic right, idling periods were long enough to execute the idling stop, during which an engine halts. Whereas, during the idling time for bus stops, the idling periods were not so long enough to execute idling stop. Deceleration periods among the total turnarounds of a city bus occupies about 24.7%, during which, for about 30%, a deceleration maintains for more than four seconds. Thus, using the energy during deceleration period, which then can be recovered from braking energy, it was also found that a hybrid system can be effectively implemented to a city bus.

Monte Carlo Simulation for Dose Distributions from Ir-192 in Brachytherapy (근접 방사선치료용 이리듐 선원의 선량분포에 대한 몬데칼로 시뮬레이션)

  • 김승곤;강정구;이정옥;정동혁;문성록
    • Progress in Medical Physics
    • /
    • v.13 no.4
    • /
    • pp.187-194
    • /
    • 2002
  • In this work we investigated through Monte Carlo calculations the physical characteristics of the absorbed dose from the Ir-192 source used in brachytherapy The Monte Carlo calculations were performed using the code EGS4, which was extensively modified in order to handle cylindrical sources, phantoms, and energy distributions to suit out own purpose. From the results of the calculations for the $\beta$ -rays, it was found that they contribute on the average 0.02% to The total absorbed dose in the distance range of 0.5-5.0 cm from the source. This is due to the face that, although most of the primary $\beta$ -rays are absorbed in the source and encapsulation material, the resulting low energy braking radiation from them contribute to such a distance. The absorbed dose in the encapsulation material varied on the average from 2.8% for platinum down to 1.1% for iron. The radial dose functions obtained by our Monte Carlo calculations were consistent within $\pm$3% with those of the TG-43 report for the radial distance interval 0.5-10.0 cm from the source. The user code we wrote in this work can be used for other sources of different sizes and so it can be very useful in designing and producing the sources for brachytherapy.

  • PDF