• Title/Summary/Keyword: Brakes

Search Result 188, Processing Time 0.023 seconds

Stress and temperature analysis of a drum brake using FEM (유한요소법을 이용한 드럼브레이크의 응력 및 온도 해석)

  • 함선균;이기수
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2001.04a
    • /
    • pp.707-710
    • /
    • 2001
  • Brakes are one of the important safety parts in cars. The requirements of brakes in performance, in comfort, and working lifetime are high. This paper presents the static analysis on the stress and temperature of a automotive drum brake. The particular interest is the distribution of the contact pressure between brake lining and drum. The problems to be solved are the effects of friction coefficient, actuation force, temperature, and brake component's stiffness. The contact problem includes friction, and is solved using the ABAQUS.

  • PDF

Measurement of Mechanical Braking Force for KHST (한국형 고속전철의 기계 제동력 측정 방법)

  • Kim Seogwon;Kim Youngguk;Park Chankyoung
    • Proceedings of the KSR Conference
    • /
    • 2003.05a
    • /
    • pp.580-585
    • /
    • 2003
  • Korean high speed train (KHST) has adopted a combined electric/ mechanic (friction) braking system. Electric brakes are consist of rheostatic brake, regenerative brake and eddy current brake and mechanical brakes are composed of disc brake, wheel disc brake and tread brake. In this paper, we introduce the braking performance test and the measuring method of mechanical brake. And disc brake performance has been reviewed by the experimental method. The on-line test of KHST has been carried out up to 260 km/h and proved that the disc braking capacity of KHST is sufficient.

  • PDF

An automobile brake judder analysis using CAE (CAE를 이용한 브레이크 저더 해석)

  • Kim H.J.;Kim S.;Kang H.Y.;Yang S.M.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2005.06a
    • /
    • pp.507-510
    • /
    • 2005
  • Brake judder, which occurs when brakes are suddenly applied to a vehicle driving at high speed, affects the driver's safety to a great extent. It also has a low frequency that drivers can easily feel. Among theses presented, none offered studies using modeling of actual brakes in computer simulation in order to recreate the brake judder phenomenon, and most of them directly applied the frequency generated by the judder. To resolve this issue, this study hopes to develop a computer model that can recreate the phenomenon of brake judder. In this paper, in order to examine the vibration problem occurring when brake is applied on the test car, the multibody dynamic analysis program ADAMS was used to develop a computer model that can recreate the actual braking mechanism while breaking away from the existing understanding of brakes. Thus the existence of the brake judder phenomenon due to DTV(Dist Thickness Variation) and wheel rotating speed was examined through the developed model.

  • PDF

Canonical Latin Square Algorithm for Round-Robin Home-and-Away Sports Leagues Scheduling (라운드-로빈 홈 앤드 어웨이 스포츠 리그 대진표 작성 정규형 라틴 방진 알고리즘)

  • Lee, Sang-Un
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.18 no.4
    • /
    • pp.177-182
    • /
    • 2018
  • The home-and-way round-robin sports leagues scheduling problem with minimum brake is very hard to solve in polynomial time. This problem is NP-hard, the complexity status is not yet determined. This paper suggests round-robin sports leagues scheduling algorithm not computer-aided program but by hand with O(n) time complexity for arbitrary number of teams n with always same pattern. The algorithm makes a list of mathes using $n{\times}n$ canonical latin square for n=even teams. Then trying to get home(H) and away(A) with n-2 minimum number of brakes. Also, we get the n=odd scheduling with none brakes delete a team own maximum number of brakes from n=even scheduling.

Numerical Study on the Thermal Distortions of Ventilated Disk Brakes Due to Air Cooling Effects (벤틸레이티드 디스크 브레이크에서 공냉효과가 열변형 거동에 미치는 영향에 관한 수치적 연구)

  • 조승현;이일권;김청균
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 1999.06a
    • /
    • pp.332-338
    • /
    • 1999
  • A coupled thermal-mechanical analysis has been presented for the thermal distortions of the ventilated disk brakes during IS braking operations. The FEM results show that the bendings and distortions of the disk toward the left side are decreased, but the sinusoidal distortion of the disk rubbing surface along the arc length of the vent hole is highly increased by increasing the convective air cooling effects, which is heavily related to the squeal, wear and micro-thermal crackings at the rubbing surfaces due to uneven dissipation rates of friction heatings.

  • PDF

Coupled temperature-displacement modeling to study the thermo-elastic instability in disc brakes

  • Ramkumar, E.;Mayuram, M.M.
    • Coupled systems mechanics
    • /
    • v.1 no.2
    • /
    • pp.165-182
    • /
    • 2012
  • Macroscopic hot spots formed due to the large thermal gradients at the surface of the disc brake rotor, make the rotor to fail or wear out early. Thermo-elastic deformation results in contact concentration, leading to the non uniform distribution of temperature making the disc susceptible to hot spot formation. The formation of one hot spot event will predispose the system to future hot spotting at the same location. This leads to the complete thermo-elastic instability in the disc brakes; multitude parameters are responsible for the thermo elastic instability. The predominant factor is the sliding velocity and above a certain sliding velocity the instability of the brake system occurs and hot spots is formed in the surface of the disc brake. Commercial finite element package ABAQUS(R) is used to find the temperature distribution and the result is validated using Rowson's analytical model. A coupled analysis methodology is evolved for the automotive disc brake from the transient thermo-elastic contact analysis. Temperature variation is studied under different sliding speeds within the operation range.

Design for Yaw Brake System in Wind Turbine (풍력발전기 요 브레이크 시스템의 설계)

  • Park, Jin-Hwan;Park, Sang-Shin;Yoon, Yong-Ik;Yoo, Chang-Hee;Hwang, Jung-Gyu
    • Tribology and Lubricants
    • /
    • v.27 no.4
    • /
    • pp.204-208
    • /
    • 2011
  • Yaw brakes are used in wind turbines to control the orientation of blades to be perpendicular to the wind. These devices are very important machine elements because they are closely related to the overall efficiency of wind turbines. One unit of yaw brakes is composed of a friction pad and a caliper. In this study, a tangential force between the friction pad and the disk is calculated when the brake is acting in 750 kW wind turbine. Then, stress distribution and the deformation of the caliper are calculated using a finite element analysis. An experimental equipment is also developed to verify the exactness of calculated results. The analytical and experimental results are presented and discussed.

Characteristic Analysis And Comparison Of The Linear Eddy-Current brake systems (직선형 와전류 제동기의 특성 해석 및 비교)

  • Jang, S.M.;Kwon, J.K.;Lee, S.H.;Cha, J.W.;Kim, B.S.;Cho, H.J.
    • Proceedings of the KIEE Conference
    • /
    • 2003.04a
    • /
    • pp.125-127
    • /
    • 2003
  • Brake forces due to eddy-currents induced by the relative motion of a conductor and a magnetic devices: motors, brakes and magnetically levitated vehicles. In particular, the practicality of using permanent magnet in eddy-current brakes system is obviously recent, due to the manifold improvement in magnet materials and technology. For such a system we give analytical formulas considering eddy-current distribution as variables: flux density for each region and forces.

  • PDF

압력제어솔레노이드밸브를 이용한 직접구동 방식의 유압회로에 의한 자동변속기의 변속품질 향상에 관한 연구

  • 김정관;한명철
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1995.10a
    • /
    • pp.577-580
    • /
    • 1995
  • This paper suggests direct-acting hydraulic circuit to control clutches and brakes in automatic transmission. As only one pressure control valve controls the pressure of several friction elements with accumulators in conventional hydraulic circuit, the controllable range is limited. In addition, it is difficult to control the fine timing between apply clutch and release clutch. So, we designed new method to control the pressure of clutch which uses ressure control valve and pressure control solenoid valve independently in each friction element. through this structure improvement of hydraulic circuit, we can control the pressure of clutches and brakes finely and fine timing of between apply clutch and release clutch.

  • PDF