• 제목/요약/키워드: Brake force

검색결과 280건 처리시간 0.025초

회전 디스크 브레이크의 스퀼소음에 대한 선형안정성 연구 (Linear Stability Analysis of a Rotating Disc Brake for Squeal Noise)

  • 강재영
    • 한국소음진동공학회논문집
    • /
    • 제19권10호
    • /
    • pp.1092-1098
    • /
    • 2009
  • The squeal propensity of an automotive disc brake system is studied in the theoretical and computational manner. The rotating disc is in contact with two stationary pads and the nonlinear friction is engaged on the contact surface. The friction-coupled equations of motion are derived in the finite element(FE) of the actual brake disc and pad. From the general definition of friction force, the rotation and in-plane mode effects can be included properly in the brake squeal model. The eigenvalue sensitivity analysis and the mode shape visualization at squeal frequencies are also conducted for the detailed investigation. It is found that the squeal propensity is strongly influenced by rotation effect and the in-plane mode can be involved in squeal generation.

와전류 제동프레임의 구조해석 및 최적설계 (Structural Analysis and Optimal Design of Eddy Current Brake Frame)

  • 이승철;강신유
    • 한국정밀공학회지
    • /
    • 제21권5호
    • /
    • pp.106-113
    • /
    • 2004
  • The eddy current brake system is a non-contact brake based on the mutual relation between the rail and the frame. Consequently, the accuracy is required in estimating the stress concentration and the deformation of the eddy current brake system. In this paper, the static analysis considering the gravity and the suction force for the deformation and the stress concentration of the main frame of the initially designed eddy current brake system was carried out. The shape of the I-type beam obtained from the optimization was analyzed and compared with the initial model. Also, the initial model was modified based on the optimization model and the result was verified to have the acceptable improvement.

휠제동장치의 스퀼소음 제어를 위한 해석결과 분석 (Analysis of FE/test result for con011ing the squeal noise of wheel brake system)

  • 차정권;박영일;이동균;조동현
    • 한국철도학회:학술대회논문집
    • /
    • 한국철도학회 2009년도 춘계학술대회 논문집 특별세미나,특별/일반세션
    • /
    • pp.595-600
    • /
    • 2009
  • Passengers in a vehicle feel uncomfortable due to squeal noise. Squeal noise, a kind of self-excited vibration, is generated by the friction force between the disc and the pad of the automobile. In this paper, modal analysis of wheel brake system was performed in order to prediction of squeal phenomenon. It was shown that the prediction of system instability is possible by FEM. Finite element model of that brake system was made. Some parts of a real brake was selected and modeled. The normal mode analysis method performs analyses of each brake system component. Experiment of modal analysis was performed for each brake components and experimental results were compared with analytical result from FEM. The complex eigenvalue analysis results compared with braking test. The analysis results show good correlation with braking test for the squeal frequency at an unstable mode.

  • PDF

잠김 방지 기능을 가지는 비접촉식 와전류형 제동장치의 견실제어 (Robust Control of an Anti-Lock Eddy Current Type Brake System)

  • 이갑진;박기환
    • 제어로봇시스템학회논문지
    • /
    • 제4권4호
    • /
    • pp.525-533
    • /
    • 1998
  • A conventional contact type brake system which uses a hydraulic system has mny Problems such as time delay response due to pressure build-up, brake pad wear due to contact movement, bulky size, and low braking performance in high speed region. As vehicle speed increases, a more powerful brake system is required to ensure vehicle safety and reliability. In this work, a contactless brake system of an eddy current type is proposed to overcome problems. Optimal torque control which minimizes a braking distance is investigated with a scaled-down model of an eddy current type brake. It is possible to realize optimal torque control when a maximum friction coefficient (or desired slip ratio) corresponding to road condition is maintained. Braking force analysis for a scaled-down model is done theoretically and experimentally compensated. To accomplish optimal torque control of an eddy current type brake system, a sliding mode control technique which is, one of the robust nonlinear control technique is developed. Robustness of the sliding mode controller is verified by investigating the braking performance when friction coefficient is varied. Simulation and experimental results will be presented to show that it has superior performance compared to the conventional method.

  • PDF

장대화물열차 제동 시 연결기에 발생하는 충격력 해석 및 분석 (Analysis and Evaluation of Reduction of Impact Force in a Coupler when a Long Freight Car Brakes)

  • 이정준;구정서;조병진;나희승;문형석
    • 한국기계가공학회지
    • /
    • 제17권1호
    • /
    • pp.130-137
    • /
    • 2018
  • In long freight trains, there is a brake time delay in the neighboring freight cars that causes damage and fractures of couplers, especially the knuckle of them. If there is a problem for couplers in the cars, this could cause a derailment and lead to damage of human life and property damage. In this study, maximum forces on the couplers are studied when a long freight car brakes, with brake delay time and coupler gap. We have made a dynamic model of 50 freight cars and couplers, applying contact between couplers and a characteristic curve for expressing force and displacement of buffers with SIMPACK, a multi-body dynamics program. We use EN 14531-2 from the British Standards Institution, a standard of freight car brakes for the verification of the dynamic model. We also use a simplified method to analyze the dynamic model of 50 freight cars. With changing coupler gap and brake delay time, we do comparative analysis with AAR M-201 from the Association of American Railroads, a standard of AAR couplers. From this result, we find that the standard on fatigue limit is satisfied, such that the brake delay time is within 0.06 second if the coupler gap of the AAR coupler is within 20 millimeters.

드럼 브레이크에서의 열응력에 의한 내구성을 통한 융합적 분석 (Convergent Analysis through Durability by Thermal Stress at Drum Brake)

  • 오범석;조재웅
    • 한국융합학회논문지
    • /
    • 제11권5호
    • /
    • pp.139-144
    • /
    • 2020
  • 본 연구에서는 드럼자체와 브레이크에 대한 시뮬레이션 해석을 하였으며 열해석 결과와 구조 해석을 통한 내구성을 고찰하여 그 해석 결과를 얻었다. 브레이크 실린더로 인하여 힘을 받는 라이닝,라이닝의 확장으로 인하여 힘을 받는 드럼 내부, 축의 회전으로 인하여 힘을 받는 드럼에 대한 열응력 및 구조 해석을 통하여 어느 부분에 등가응력과 변형량이 큰지를 확인하였다. 본 연구 결과를 종합하여 브레이크 디스크설계에 응용한다면 열변형 방지 및 그 내구성을 증대시키는데 활용성이 클 것으로 사료된다. 본 연구 결과는 실제적으로 드럼 브레이크에서의 열응력에 견딜 수 있는 내구성 있는 설계에 유용하게 적용할 수 있다. 계절별 기차선로 이음새에서의 내구성 해석을 적용함으로서 본 연구 결과가 미적인 설계에 응용되는 융합 연구에 유리하다고 보여진다.

Brake Juder Analysis for Small Size Bus

  • Kim, Jin-soo;Suh, Eun-Suk
    • International Journal of Precision Engineering and Manufacturing
    • /
    • 제2권2호
    • /
    • pp.31-37
    • /
    • 2001
  • In this paper, a method to improve judder by changing the front and rear wheel brake force distribution ratio was proposed. ADAMS, a commercial dynamic analysis software was used to model a small size bus and its modeling procedure was explained. By using the ADAMS vehicle model, the judder phenomena of the small bus were analyzed, and based on analysis results, the validity of the improvement method was proposed. Also in order to lessen the problem jubber sensitivity analysis and test results were proposed.

  • PDF

고속전철 와전류 제동장천의 마그네트 열해석 (Thermal analysis of High speed train Eddy current brake system)

  • 정수진;김동희;강도현
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2001년도 춘계학술대회 논문집 전기기기 및 에너지변환시스템부문
    • /
    • pp.397-400
    • /
    • 2001
  • In eddy, current brake system(BS), high current may flow for increase of braking force within a short time. Therefore, the estimation of thermal characteristics for BS is required. In this paper, the thermal characteristics of eddy-current brake for the Korean high speed train are analyzed by using 2-dimensional Finite Element Method (2D-FEM) and measured.

  • PDF

의료용 햅틱 마스터의 동적 모델링과 힘 반향 제어 (Dynamic Modeling and Repulsive Force Control of Medical Hpatic Master)

  • 오종석;최승복
    • 한국소음진동공학회논문집
    • /
    • 제22권3호
    • /
    • pp.284-290
    • /
    • 2012
  • In this research, a new type of haptic master device using electrorheological(ER) fluid for minimally invasive surgery(MIS) is devised and control performance of the proposed haptic master is evaluated. The proposed haptic master consists of ER bi-directional clutch/brake for 2 DOF rotational motion(X, Y) using gimbal structure and ER brake on the gripper for 1 DOF rotational motion (Z). Using Bingham characteristic of ER fluid and geometrical constraints, principal design variables of the haptic master are determined. Then, the generation of torque of the proposed master is experimentally evaluated as a function of applied field of voltage. A sliding mode controller which is robust to uncertainties is then designed and empirically realized. It has been demonstrated via experiment that the proposed haptic master associated with the controller can be effectively applied to MIS in real field conditions.

CVT 및 BrakeForce 제어를 통한 차량 주행 안정성 향상 (Improving Vehicle Driving Stability by Controlling CVT and Brake Force)

  • 조현욱;이승종
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2002년도 춘계학술대회 논문집
    • /
    • pp.305-308
    • /
    • 2002
  • The mechanics, electronics and manufacturing technology have been developed rapidly. Nowadays vehicle stability becomes more and more important then ABS (Anti-lo7k Brake System), ASR (Anti-Slip Regulator), TCS, (Traction Control System), ESP (Electronic Stability Program), and VDC (Vehicle Dynamic Control) which actively control the vehicle stability actively has been improved. In this study, instead of automatic transmission, CVT (Continuously Variable Transmission) is used because of the continuously gear ratio changes. It can effectively transfer the torque from engine to tire more than other gear transmission. The modeling is simplified assuming that there are no resistance parameters.

  • PDF