• Title/Summary/Keyword: Brake Test

Search Result 390, Processing Time 0.036 seconds

Dynamic Analysis and Experimental Verification of Brake Judder considering Quality (품질을 고려한 브레이크 저더의 동역학 해석 및 시험 검증)

  • 김효식;임홍재
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2003.11a
    • /
    • pp.365-370
    • /
    • 2003
  • The problem of brake judder is typically caused by quality defects in manufacturing. This quality problem, however, can't be controlled deterministically and requires analyses and designs considering uncertainties. This paper presents a method for dynamic analysis of a brake judder considering uncertainties. Firstly, quality defects, which come from the uncertainties, are determined by examination of symptoms of the brake judder quality problem. Effective quality defects are selected by investigation of process capability and comparison of sensitivity of each quality defects and noise levels of the effective quality defects are determined. Secondly, flexible multibody dynamic analysis and finite element analysis according to the proposed method are carried out. Finally, The analysis results are compared with the test results with noise levels of the effective quality defects.

  • PDF

Application of a Brake Pressure Restriction Valve to a Motorcylce ABS (제동압력 제한밸브의 모터싸이클 ABS에의 적용)

  • 지동익;류제하;김호수;임재우;박종혁
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.9 no.2
    • /
    • pp.130-136
    • /
    • 2001
  • This paper presents an of a brake pressure restriction valve to a motorcycle anti-lock brake system(ABS). In the conventional anti-lock brake system of automobiles, slip ratio as a control variable is actively controlled, which requires wheel speed sensors, ECU, and a pressure modulator. In the ABS valve that has been developed for use in motorcycles, however, the brake pressure that is close to the wheel locking pressure is preset by simple exercises and then the valve just allows to pass the wheel locking pressure and cutoff the remaining pressure. Simulation studies with a single wheel braking dynamics and lumped chassis model show that the pressure restriction valve has basic ABS functions as well as some robustness properties for the uncertain load and road conditions as well as various initial braking speeds. Field tests also show that the pressure restriction valve avoids the wheel locking effectively.

  • PDF

Experimental Study on the Pneumatic Characteristics of Brake System for Freight Car (화차 제동장치의 공기압 특성에 관한 실험적 연구)

  • 남성원;문경호;이동형;최경진;권석진
    • Proceedings of the KSR Conference
    • /
    • 1999.05a
    • /
    • pp.110-115
    • /
    • 1999
  • Experimental study is conducted to clarify the pneumatic characteristics of brake system for freight car. KNR(Korean National Railroad)'s freight cars have the laden-tare type control valve of brake system. But, laden-tare type control valve has some shortcomings to match the high speed freight car. Newly developed diaphragm type control valve is introduced to adopt freight car for speed-up. The test using the formated train set consisted of 21 cars is conducted to estimate the pneumatic braking efficiency of the mixed train set. From the results of experiment, the pressure characteristics of each brake cylinder show similar patterns qualitatively. But, in the case of release and brake application, quantitative pressure values of brake cylinder are different.

  • PDF

Characteristics Analysis of the Solenoid Valve for Exhaust Brake (배기 브레이크용 솔레노이드 밸브의 특성 해석)

  • 윤소남;함영복
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.12 no.1
    • /
    • pp.190-195
    • /
    • 2004
  • An exhaust brake system is composed of a gate valve, a pneumatic cylinder and an on-off solenoid valve. An on-off solenoid valve which is a key component of the exhaust brake system ought to have characteristics such as high reliability and long life for reducing the foot brake and tires damage, and for driver's fatigue relief of middle/large size vehicles running a long distance. In this paper, an on-off solenoid valve which is used for vehicle brake system was studied. For the performance evaluation of the on-off solenoid, electromagnetic characteristics and dynamic characteristics are analyzed. On the basic study for the performance improvement of exhaust brake system, pneumatic circuit and pneumatic valve of on-off solenoid type were suggested and the performance of pneumatic valve through the test procedure was evaluated.

A Study on Applicability of Carbon Ceramic Disc using Pretreated Carbon Fiber (전처리된 탄소섬유를 이용한 카본 세라믹 디스크 적용 가능성에 대한 연구)

  • Yoo, Tae-Doo;Kim, Hong-Gun;Kwac, Lee-Ku
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.21 no.4
    • /
    • pp.39-45
    • /
    • 2022
  • In this study, it was verified that carbon-ceramic brake discs can replace existing cast-iron brake discs of the same size. In addition, a method of pretreating carbon fiber to secure heat dissipation characteristics while using a small amount of carbon fiber was established. The thermal conductivity and bending strength characteristics were analyzed according to the carbon content, and brake braking tests were conducted. Through pretreatment, the maximum temperature was lowered by 16 ℃ compared to the case using only carbon fiber, and the cooling rate was improved by approximately 10% compared to metal brake discs. However, the total heat capacity increased as the mass increased owing to the reaction. Thus, the measured temperature was higher than that of the metal brake disc; therefore, additional research is required.

Characteristic Test of the Electro Mechanical Brake Actuator for Urban Railway Vehicles (도시철도용 전기기계식 제동장치의 특성시험)

  • Kim, Min Soo;Oh, Seh Chan;Kwon, Seok Jin
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.33 no.7
    • /
    • pp.535-540
    • /
    • 2016
  • The braking device in railway vehicles decelerates or stops the train by dissipating the thermal energy converted from kinetic energy into the air. Therefore, the brake system is crucial for safety. In this paper, we performed a study on an electromechanical brake actuator using an electrical motor as an alternative to pneumatic air cylinders to reduce the idle running time in braking, which subsequently increases braking distance, and to ensure reliable response characteristics. Especially, to analyze the response characteristics of the electromechanical brake actuator, we measure the delay time, response time and power consumption compared to the air cylinder. It is confirmed that the electromechanical brake actuator can reduce reaction time by 0.1 seconds (Braking Action) and 0.46 seconds (Brake Release) compared to the air cylinder.

Analysis on the Squeal Noise of Wheel Brake System for Tilting Train (틸팅차량용 휠 제동장치의 스퀼 소음 해석)

  • Cha, Jung-Kwon;Park, Yeong-Il
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.20 no.1
    • /
    • pp.98-105
    • /
    • 2010
  • Squeal, a kind of self-excited vibration, is generated by the friction between the disc and the friction materials. It occurs at the ending stage of the braking process, and radiates and audible frequency range of 1 kHz to 10 kHz. Squeal is generated from unstability because of the coupling between the translation and rotation of the system. This instability is caused by the follower force and follower force is normal component of the friction force. In this paper modal analysis of wheel brake system was performed in order to predict the squeal phenomenon. It was shown that the prediction of system instability is possible by FEM. A finite element model of that brake system was made. Some parts of a real brake was selected and modeled. Modal analysis method performs analyses of each brake system component. Experimental modal analysis was performed for each brake components and experimental results were compared with analytical results from FEM. To predict the dynamic unstability of a whole system, the complex eigenvalue analysis for assembly modeling of components confirmed by modal analysis is performed. The finite element models of the disk brake assembly have been constructed, and the squeal noise problems have been solved by complex eigenvalue analysis. The complex eigenvalue analysis results compared with real train test.

Experimental Study of Braking Friction and Wear Characteristics of Disk Brake (디스크 브레이크의 제동마찰 및 마멸특성에 관한 실험적 연구)

  • Kim Chung-Kyun;Lee Boung-Kwan;Kim Han-Goo
    • Tribology and Lubricants
    • /
    • v.22 no.3
    • /
    • pp.149-154
    • /
    • 2006
  • This paper presents the braking friction and wears on the rubbing surfaces of a friction pad-disk brake. In this study, four friction disk specimens are sampled from unused and used disks in which are taken from the disk brake system when the friction induced vibration and noise problems have been occurred during a braking period at a running period of 10,000 km, 20,000 km, and 30,000 km in random. The experimental results indicate that the tribological characteristics of an unused disk brake shows equal and stable as a friction coefficient and temperature distributions during a braking friction/wear test period including a total friction mode from the start to running periods. But the used disk brake shows unstable and uneven friction modes between an outside and inside rubbing surfaces of a disk brake in terms of a friction coefficient and wears. This may lead to a friction induced friction vibration and noise problems of a used disk brake.

A study of comparative experiment process for heat resistance of brake disk materials (제동디스크 소재의 내열성 비교시험방법 연구)

  • Lim, Choong-Hwan;Goo, Byeong-Choon
    • Proceedings of the KSR Conference
    • /
    • 2008.06a
    • /
    • pp.941-947
    • /
    • 2008
  • In the braking of a railroad car, mechanical brake systems using wheel tread and brake disk are applied as well as electrical brake systems by regenerator and rheostat. During disk braking, kinetic energy of the vehicle is converted into thermal energy through friction between disk and brake pad. And it causes high temperature concentration and generates thermal crack on the brake disk surface. In this study, comparative test process for heat-resistance of candidate materials was designed for development of brake disk materials having high heat-resistance. We also verified the efficiency of the process by experiments using conventional brake disk materials.

  • PDF

A Study on Development of Brake System of Light Eco-Friendly Car Considering Heat Load and Regenerative Braking Characteristic (열부하 및 회생 제동 특성을 고려한 경형 친환경차의 제동시스템 개발에 관한 연구)

  • Shim, J.H.;Shin, U.H.;Lee, J.H.;Hwang, S.R.;Yim, W.S.;Kim, B.C.
    • Journal of Auto-vehicle Safety Association
    • /
    • v.12 no.2
    • /
    • pp.7-13
    • /
    • 2020
  • Recently, there is a big issue of downsizing on brake system according to fuel efficiency and regenerative braking cooperation control. Especially, small cars have improved in a variety ways such as electric vehicle and smart car compared to previous small cars. So, small brake system is strongly required in the car industry. A new small brake system for light compact vehicles was proposed in this paper. For this system, the solid type disc and caliper were newly developed. And the important design factors were considered to reduce brake size. First, we calculated the temperature rise of disc through heat capacity formula and CAE analysis. Second, we analyzed the housing and carrier stiffness of caliper to select the reasonable condition. Finally, the superiorities of the developed brake system were verified by heat capacity, consumption liquid level, braking feeling, judder, wear test and regenerative braking cooperation control analysis. A developed brake system is expected to be useful for brake system of light compact platform.