• Title/Summary/Keyword: Brake Pedal

Search Result 56, Processing Time 0.024 seconds

Strength Analysis of Die-cast Aluminum-alloy Brake Pedals for use in Lightweight Cars (자동차 경량화를 위한 다이캐스팅용 알루미늄합금 브레이크 페달의 강도해석)

  • Cho, Seunghyun;Jang, Junyoung
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.25 no.2
    • /
    • pp.138-142
    • /
    • 2016
  • In this study, a strength analysis was performed to assess die-cast aluminum alloy brake pedals as an improved alternative to wrought alloys. Aluminum brake pedal shapes are considered to be suitable for the die-casting process. The strength criterion of Volvo trucks was used as the criterion for the pedal strength. The results of this analysis showed that the frame thickness of the aluminum brake pedal must be increased from 12 mm to 18 mm to have a strength superior to that of a steel brake pedal. Additionally, the stress and weight of the aluminum brake pedal were found to be approximately 24% and 26% lower than those of the steel brake pedal, respectively. Mounting tests and strength assessments verified that the proposed die-cast aluminum alloy brake pedal demonstrated sufficient strength.

EFFECT OF BRAKE PEDAL IMPEDANCE ON BRAKING PERFORMANCE IN EH-BBW SYSTEM

  • PARK S.
    • International Journal of Automotive Technology
    • /
    • v.6 no.4
    • /
    • pp.391-402
    • /
    • 2005
  • Despite its superior braking performance to conventional vehicles on test tracks, the performance of the ABS-equipped car seems disappointing on real highway. The poor braking performance results from questionable design of the human-machine interface(HMI) of the brake system. Force-displacement relation at the brake pedal has a strong effect on the braking performance. Recently developed brake-by-wire (BBW) system may allow us to tailor the force feel at the brake pedal. This study aims at exploring analytical ways of designing human-machine interface of BBW system. In this paper, mathematical models of brake pedal feel for electro-hydraulic BBW (EH-BBW) system are developed, and the braking motion and the characteristics of the driver's leg action are modeled. Based on the dynamic characteristics of the brake pedal and the driver, two new HMI designs for EH-BBW system are proposed. In the designs, BBW system is modeled as a type of master-slave teleoperator. The effectiveness of the proposed designs is investigated using driving simulation.

A Study on the System of Vehicle Pedal Based on Simple Reaction Time of Visual Information (시각정보의 단순반응시간을 고려한 페달 시스템의 관한 연구)

  • 고관명;이근희
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.14 no.23
    • /
    • pp.37-46
    • /
    • 1991
  • This study deals with the designing of vehicle pedal considering simple reaction time of visual information. Because vehicle accidents may bring about fatal results, the vehicle design which is considered with safity is very important. Though the vehicle design considered with safity is important in the whole parts of vehicle, the designing of pedal which is directly connected the designing of pedal which can minimize reaction time to risk through simple experiments. In the experiments, the experience of driving, the location of brake pedal and the space between brake and accelerator pedal are considered. Using experiment equipment and IBM-PC, simple reaction time was measured. The data which was result from measurement was analyzed with SPSS/PC+. When brake pedal located right side and the space between brake and accelerator pedal was 35cm, reaction was minimized. Based on this results, the vehicle pedal should be designed.

  • PDF

Development of Composite Brake Pedal for KTX-1 and Tests for Structural Certification (KTX-1 복합재 브레이크 페달 개발 및 구조 인증시험)

  • Joe, Chee-Ryong;Kim, Hyun-Su;Kim, Kwang-Su
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.23 no.7 s.166
    • /
    • pp.1104-1111
    • /
    • 1999
  • A brake pedal for the flight control system of the Korean primary trainer is developed using composite material. The development includes the structural design, stress analysis, manufacturing and the qualification tests. A FEM analysis is used for the structural design and stress analysis. Autoclaving process is used to fabricate the composite brake pedal. For the qualification tests, modular fixtures are developed and applied. It is shown that the composite brake pedal developed meets all the structural integrity requirements specified in the military specification for aircraft parts.

Durability Analysis of Aluminum Alloy Brake Pedal Manufactured by Die Casting (다이캐스팅용 알루미늄 합금 브레이크 페달의 내구성 해석)

  • Cho, Seunghyun;Kang, Seul-Ki;Kim, Hangoo
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.25 no.3
    • /
    • pp.198-203
    • /
    • 2016
  • Computer-Aided Engineering (CAE) durability analysis and experiments of an aluminum alloy brake pedal were carried out for the car lighter by die casting method. In the CAE analysis, KS standards and criteria of the Volvo Car Corporation were applied, and in the experiment, KS standards were applied. The CAE analysis results show that aluminum alloy brake pedals are stronger than the conventional steel brakes pedals because the yield strength of the aluminum alloy increased by almost 97% over that of steel. Further, the structures of the cylinder and the frame were reinforced with increasing thickness of flame and were changed to suit the die-casting process. Through a durability test based on the KS standard, the strength of a prototype of the aluminum alloy brake pedal was confirmed to be sufficient.

A study on the characteristics of automotive brake pedal force (자동차 제동장치의 답력특성에 관한 연구)

  • 김형대;임윤철
    • Journal of the korean Society of Automotive Engineers
    • /
    • v.15 no.2
    • /
    • pp.64-75
    • /
    • 1993
  • In this study, the function of a hydraulic brake system with a vacuum booster is systematically analyzed according to the mutual relations which follow : - the brake pedal force vs. booster cylinder input force - the booster output force vs. master cylinder input force - the hydraulic line pressure vs. braking deceleration. A computer program is developed based on the theory which is able to predict and analyze the pedal force characteristics at the beginning of the initial stage of brake system design. Analytical results show good agreement with the experimental vehicle test.

  • PDF

The Study on Precision Enhancement at Brake Pedal Analysis (브레이크 페달 해석 정확도 향상 연구)

  • Kim, Heejin;Lee, Daewon
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.21 no.1
    • /
    • pp.30-35
    • /
    • 2013
  • The brake pedal is one of the most important parts for controlling the speed of the vehicle. Incorrect design of the brake pedal can place the driver in danger. CAE is being done for weight reduction to improve the safety of the driver and the vehicle performance and research is performed to improve the accuracy of analysis. The accuracy of the experimental and analysis values in regard to the stiffness of brake pedals, however, is still poor. Therefore, the aim of this study is to present appropriate analysis conditions based on the factors that influence the analysis in order to obtain accurate analysis results.

An Ergonomic Design of Brake and Accelerator Pedal Placement for Korean Driver (자동차 브레이크 페달 배치의 인간공학적 설계)

  • 김유창
    • Journal of the Korean Society of Safety
    • /
    • v.10 no.3
    • /
    • pp.106-109
    • /
    • 1995
  • Optimum relocation of the brake relative to the accelerator can reduce stopping diatance and may mean the difference between an accident and a near-accident. A driving simulator was used to examine effiency of brake time. Brake time was measured for 30 participants in six conditions. Brake times were shown to improve as a result of moving the brake pedal from its typical heights above the accelerator to positions below the accelerator.

  • PDF

Development of Automotive Braking Performance Analysis Program Considering Dynamic Characteristic (차량 제동 성능 해석 프로그램 개발)

  • 정일호;이수호;서종휘;박태원
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.12 no.2
    • /
    • pp.175-181
    • /
    • 2004
  • Analysis of brake characteristics has progressed rapidly in recent years, as computer techniques have developed. However, there are many problems in predicting braking characteristics, due to the numerous design variables of the brake system. Therefore, a synthetic braking performance analysis is required for all brake system parts such as master cylinder, booster, control valve and split system. In this paper, a program which can analyze braking performance such as force distribution, braking efficiency, pedal force and pedal travel, is presented. The preprocessor of the program helps users prepare input files through a dialog box. An additional postprocessor makes the graph presentation of solved results. Also, a simple example problem is applied to show the usefulness of the presented program.

Automatic brake control system (자동 브레이크 제어장치)

  • 하정용
    • Journal of the korean Society of Automotive Engineers
    • /
    • v.11 no.6
    • /
    • pp.17-23
    • /
    • 1989
  • 자동 Brake제어장치(ABCS)는 정차중에는 brake pedal을 놓아도 되고 gear 중립시에는 clutch pedal까지 놓아도 제동력이 계속 되므로 휴식할 수 있으며 출발시에는 전후진, 상하경사에 관계없이 쉽게 출발하므로 자동차 문화에서 혁신적인 발명품이라 할 수 있을 것이다.

  • PDF