• 제목/요약/키워드: Brake Pads

검색결과 88건 처리시간 0.023초

디스크 브레이크의 적열점에 관한 3차원 시뮬레이션 (Three-dimensional Simulation of Hot spots in Disk Brakes)

  • 이일권;조승현;김청균
    • 한국윤활학회:학술대회논문집
    • /
    • 한국윤활학회 2000년도 제31회 춘계학술대회
    • /
    • pp.211-218
    • /
    • 2000
  • Hot spot behaviors on the disk-pad contact surface during a braking operation have been analyzed for a ventilated disk brake using the finite element method. Hot spots which were studied using a coupled thermal-mechanical analysis technique are influenced by all of the mechanical, thermal, elastic and plastic processes that are involved in braking cycles, but their temperature gradients are most affected by rubbing speeds, braking forces, and design parameters between the disk and the pad. Undesirable hot spots that are generated by local thermoelastic instabilities are intended to be removed by optimized design parameters and material properties. In this study, a three-dimensional numerical method for the demonstration of hot spot behaviors has been applied to the rubbing surfaces between the disk and the pad.

  • PDF

Experimental investigation on hysteretic behavior of rotational friction dampers with new friction materials

  • Anoushehei, Majid;Daneshjoo, Farhad;Mahboubi, Shima;Khazaeli, Sajjad
    • Steel and Composite Structures
    • /
    • 제24권2호
    • /
    • pp.239-248
    • /
    • 2017
  • Friction dampers are displacement dependent energy dissipation devices which dissipate earthquake energy through friction mechanism and widely used in improving the seismic behavior of new structures and rehabilitation of existing structures. In this paper, the cyclic behavior of a friction damper with different friction materials is investigated through experimental tests under cyclic loading. The damper is made of steel plates, friction pads, preloaded bolts and hard washers. The paper aims at investigating the hysteretic behavior of three friction materials under cyclic loading to be utilized in friction damper. The tested friction materials are: powder lining, super lining and metal lining. The experimental results are studied according to FEMA-356 acceptance criteria and the most appropriate friction material is selected by comparing all friction materials results.

자동차용 디스크 브레이크의 열탄성 불안정성에 관한 연구 (Study on Thermoelastic Instability of Automotive Disc Brakes)

  • 최지훈;김도형;이인
    • 소음진동
    • /
    • 제11권2호
    • /
    • pp.315-322
    • /
    • 2001
  • This paper is focused on the frictionally induced thermoelastic instability (TEI) in automotive disk brakes. This instability leads to the formation of localized high temperature contact regions known as hot spots. This article investigates the themoelastic instability in automotive disk brake systems consisting of a finite thickness layer (disk) and two half-planes (pads) using a perturbation method. The antisymmetric mode involves hot spots located alternately on two sides of the disk. As a result the circumferentially periodic hot spots produce rotor surface distortion and Induce low frequency vibration. Also the effects of system parameters on the critical speed for TEI are investigated.

  • PDF

항공기 제동장치의 열탄성 마찰 접촉 해석 (Thermo-elastic Frictional Contact Analysis of Airplane Brakes)

  • 이창원;최용기;곽병만
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2001년도 춘계학술대회논문집A
    • /
    • pp.889-894
    • /
    • 2001
  • A three dimensional transient thermo-elastic frictional contact analysis of airplane brakes is performed. The velocity history of the airplane during braking is calculated from energy conservation law. ABAQUS code is used in the analysis, and user subroutines supported in the ABAQUS are coded to calculate the frictional heat generation between pads and linings attached to back/pressure plate and rotor, respectively. Numerical results are compared with experimental ones.

  • PDF

탄소섬유가 혼합된 세라믹 복합재 제동마찰재의 마찰·마모 특성 (Tribological Properties of Ceramic Composite Friction Materials Reinforced by Carbon Fibers)

  • 구병춘;김민수
    • Tribology and Lubricants
    • /
    • 제33권1호
    • /
    • pp.15-22
    • /
    • 2017
  • Because the running speed of vehicles is increasing and a shorter braking distance is required, high heat-resistant brake pads are needed to satisfy the requirements of customers and car makers. In the near future, hazardous materials such as Cu, Cr, Zn, and Sb will be restricted from use in friction materials. Ceramic composites reinforced by carbon fibers are good candidates for eco-friendly friction materials. In this study, we develop ceramic composite friction materials. The friction materials are composed of carbon fibers, Si, SiC, graphite, and phenol resin and are prepared by hot forming and heat treatment at high temperatures. The density, void ratio, and compressive strength are $1.59-1.66g/cm^3$, 16.6-20, and 70-90 MPa, respectively. Friction and wear tests are performed using a pin-on-plate-type reciprocating friction tester at 25, 100, and $200^{\circ}C$. The counterpart material is a CrMoV steel extracted from a KTX brake disc. Friction coefficient, wear amount, and wear mechanism are measured and examined. We determine that the friction coefficients depend on the temperature and the fluctuation of the friction coefficients is larger at higher temperatures. The amount of wear increases with the surface temperatures of the specimens. The tribological properties of the developed composites are similar to those of a Cu-based sintered friction material. Through this study, it is confirmed that ceramic composite materials can be used as friction materials.

레이저 플라즈마 분광 기법을 이용한 금속 마찰 표면에서 물질전달 측정 (Measurement of Mass Transfer from Metal Friction Surfaces using Laser Plasma Spectroscopy)

  • 윤상우;김지훈;김주한
    • 한국기계가공학회지
    • /
    • 제16권4호
    • /
    • pp.46-52
    • /
    • 2017
  • We quantitatively measured the mass transfer from friction surfaces, specifically brake pads and rotors, using laser plasma spectroscopy. Specifically, we modelled the mass transfer from the pad to the rotor and measured the elemental diffusion intensity distribution in the rotor material using laser plasma spectroscopy. The main elements measured were Cu, Ni, Ti, and Cr, and the distribution of these after transfer was measured as the ratio of the atomic peak and the ion peak of the plasma in the rotor exposed to friction and the surface composition of the rotor and the roughness, respectively. We measured and quantified the diffusion coefficient for each element through the mass transfer model and found that Cr obtained the largest diffusion coefficient (D) of the elements measured based on this system with a value of $1.9484{\times}10^{-15}m^2/s$.

전동차 브레이크 스퀼 소음 현상에 대한 연구 (Study on the phenomena of brake squeal noise in rail vehicle)

  • 양용준;김성걸;박영일
    • 한국철도학회:학술대회논문집
    • /
    • 한국철도학회 2004년도 추계학술대회 논문집
    • /
    • pp.405-410
    • /
    • 2004
  • There are two types of noises in running the rail vehicle. The one is periodic by electric motors, dehumidifiers, and dusting machines. And the other is aperiodic squeal noise by the frictions between the wheels and the rail or the disks and pads. The periodic noises in rail vehicle have been reduced by changing DC motors to AC motors with silencers, and by improving the lubricants. However, almost nothing relating a periodic noise has been studied. In this paper, the experimental methods were applied to understand phenomena of the squeal noise, which was occurred by the friction variation due to aperiodic stick and slip with low repeatability in the process of dry friction of the disk and the pad when a rail vehicle was being braked. By the experimental acoustic test, it was found the specific frequencies relating the squeal noise. And by modal testing, it was measured the resonant frequencies in the disk and the pad-plate which were the components of the braking system, and in the whole braking system, and it was found the specific frequencies having the effects on the squeal noise.

  • PDF

자동차용 ABS/TCS 인터페이스 시스템 IC의 설계 (Design of an Interface System IC for Automobile ABS/TCS)

  • 이성필;김찬
    • 융합신호처리학회논문지
    • /
    • 제7권4호
    • /
    • pp.195-200
    • /
    • 2006
  • 자동차용 ABS/TCS 시스템의 기존 개별소자 회로를 시험하고, 시스템의 문제점을 컴퓨터 시뮬레이션으로 분석하였다. ABS/TCS 시스템의 성능을 개선하기 위해 에러 보상회로, 비교기 및 UVLO 회로를 가진 인터페이스 IC를 설계하고, 전기적 특성을 조사하였다. 전압 조절기는 자동차 환경에 견디기 위해 $-20^{\circ}C$에서 $120^{\circ}C$ 사이의 온도 범위에서 온도변화를 보상하도록 하였고, ABS와 브레이크는 같은 주파수와 다른 주파수의 듀티 계수를 사용하여 분리하였다. UVLO 회로와 정전압 회로는 잡음을 제거하기 위해 적용하였고, 과도 전류를 제한하기 위해 보호회로를 사용하였다. ABS/TCS 시스템의 전기적 성능을 향상시키기 위해 IC 제조를 위한 레이아웃을 설계하였다. 제작된 마스크 패턴은 11개로 구성하였으며, 전류 손실을 줄이기 위해 8개의 패드를 유효하게 배치하였다. 브레드보드 시험치와 레이아웃을 설계한 후 시뮬레이션의 시험치를 비교한 결과 시뮬레이션과 브레드보드 실험치가 거의 일치하거나 우수한 결과를 가짐을 알 수 있었다.

  • PDF