• 제목/요약/키워드: Brainstem auditory evoked potentials

검색결과 27건 처리시간 0.024초

Bickerstaff 뇌간 뇌염 1례 (A case of Bickerstaff's brainstem encephalitis in childhood)

  • 김지윤;김영옥;손영준;우영종
    • Clinical and Experimental Pediatrics
    • /
    • 제53권4호
    • /
    • pp.607-611
    • /
    • 2010
  • Bickerstaff 뇌간 뇌염은(BBE) 4주 이내의 진행성이며, 비교적 대칭성으로 오는 안근 마비와 실조증, 의식 장애 또는 심부건 반사 항진 등의 임상적 특징을 가지며, 뇌간을 침범하는 타 질환을 배제하였을 때 진단할 수 있는 드문 질환이다. 혈청 또는 뇌척수액의 항 Ganglioside 항체(GM, GD and GQ) 는 때로 BBE의 진단에 도움이 되기도 하며, 뇌 자기 공명 영상, 뇌 척수액 검사, 신경 전도 검사 및 근 전도 검사 등은 진단에 크게 도움이 되지 않는다. 저자들은 안근 마비, 실조증, 언어 운동 장애, 연하 장애, 점진적 사지 마비, 의식 저하 등의 증상을 보이며 혈청과 뇌척수액에서 anti-GM1 항체의 증가를 보여 BBE로 진단하고 면역 글로불린과 스테로이드 치료 후 완치되었던 9세의 여아의 증례를 경험하였기에 문헌 고찰과 함께 이를 보고하는 바이다.

Test-Retest Reliability of Level-Specific CE-Chirp Auditory Brainstem Response in Normal-Hearing Adults

  • Jamal, Fatin Nabilah;Dzulkarnain, Ahmad Aidil Arafat;Shahrudin, Fatin Amira;Marzuki, Muhammad Nasrullah
    • Journal of Audiology & Otology
    • /
    • 제25권1호
    • /
    • pp.14-21
    • /
    • 2021
  • Background and Objectives: There is growing interest in the use of the Level-specific (LS) CE-Chirp® stimulus in auditory brainstem response (ABR) due to its ability to produce prominent ABR waves with robust amplitudes. There are no known studies that investigate the test-retest reliability of the ABR to the LS CE-Chirp® stimulus. The present study aims to investigate the test-retest reliability of the ABR to the LS CE-Chirp® stimulus and compare its reliability with the ABR to standard click stimulus at multiple intensity levels in normal-hearing adults. Subjects and Methods: Eleven normal-hearing adults participated. The ABR test was repeated twice in the same clinical session and conducted again in another session. The ABR was acquired using both the click and LS CE-Chirp® stimuli at 4 presentation levels (80, 60, 40, and 20 dBnHL). Only the right ear was tested using the ipsilateral electrode montage. The reliability of the ABR findings (amplitudes and latencies) to the click and LS CE-Chirp® stimuli within the same clinical session and between the two clinical sessions was calculated using an intra-class correlation coefficient analysis (ICC). Results: The results showed a significant correlation of the ABR findings (amplitude and latencies) to both stimuli within the same session and between the clinical sessions. The ICC values ranged from moderate to excellent. Conclusions: The ABR results from both the LS CE-Chirp® and click stimuli were consistent and reliable over the two clinical sessions suggesting that both stimuli can be used for neurological diagnoses with the same reliability.

Test-Retest Reliability of Level-Specific CE-Chirp Auditory Brainstem Response in Normal-Hearing Adults

  • Jamal, Fatin Nabilah;Dzulkarnain, Ahmad Aidil Arafat;Shahrudin, Fatin Amira;Marzuki, Muhammad Nasrullah
    • 대한청각학회지
    • /
    • 제25권1호
    • /
    • pp.14-21
    • /
    • 2021
  • Background and Objectives: There is growing interest in the use of the Level-specific (LS) CE-Chirp® stimulus in auditory brainstem response (ABR) due to its ability to produce prominent ABR waves with robust amplitudes. There are no known studies that investigate the test-retest reliability of the ABR to the LS CE-Chirp® stimulus. The present study aims to investigate the test-retest reliability of the ABR to the LS CE-Chirp® stimulus and compare its reliability with the ABR to standard click stimulus at multiple intensity levels in normal-hearing adults. Subjects and Methods: Eleven normal-hearing adults participated. The ABR test was repeated twice in the same clinical session and conducted again in another session. The ABR was acquired using both the click and LS CE-Chirp® stimuli at 4 presentation levels (80, 60, 40, and 20 dBnHL). Only the right ear was tested using the ipsilateral electrode montage. The reliability of the ABR findings (amplitudes and latencies) to the click and LS CE-Chirp® stimuli within the same clinical session and between the two clinical sessions was calculated using an intra-class correlation coefficient analysis (ICC). Results: The results showed a significant correlation of the ABR findings (amplitude and latencies) to both stimuli within the same session and between the clinical sessions. The ICC values ranged from moderate to excellent. Conclusions: The ABR results from both the LS CE-Chirp® and click stimuli were consistent and reliable over the two clinical sessions suggesting that both stimuli can be used for neurological diagnoses with the same reliability.

Intraoperative Neurophysiological Monitoring during Microvascular Decompression Surgery for Hemifacial Spasm

  • Park, Sang-Ku;Joo, Byung-Euk;Park, Kwan
    • Journal of Korean Neurosurgical Society
    • /
    • 제62권4호
    • /
    • pp.367-375
    • /
    • 2019
  • Hemifacial spasm (HFS) is due to the vascular compression of the facial nerve at its root exit zone (REZ). Microvascular decompression (MVD) of the facial nerve near the REZ is an effective treatment for HFS. In MVD for HFS, intraoperative neurophysiological monitoring (INM) has two purposes. The first purpose is to prevent injury to neural structures such as the vestibulocochlear nerve and facial nerve during MVD surgery, which is possible through INM of brainstem auditory evoked potential and facial nerve electromyography (EMG). The second purpose is the unique feature of MVD for HFS, which is to assess and optimize the effectiveness of the vascular decompression. The purpose is achieved mainly through monitoring of abnormal facial nerve EMG that is called as lateral spread response (LSR) and is also partially possible through Z-L response, facial F-wave, and facial motor evoked potentials. Based on the information regarding INM mentioned above, MVD for HFS can be considered as a more safe and effective treatment.

Hemifacial Spasm : A Neurosurgical Perspective

  • Kong, Doo-Sik;Park, Kwan
    • Journal of Korean Neurosurgical Society
    • /
    • 제42권5호
    • /
    • pp.355-362
    • /
    • 2007
  • Hemifacial spasm (HFS) is characterized by tonic clonic contractions of the muscles innervated by the ipsilateral facial nerve. Compression of the facial nerve by an ectatic vessel is widely recognized as the most common underlying etiology. HFS needs to be differentiated from other causes of facial spasms, such as facial tic, ocular myokymia, and blepharospasm. To understand the overall craniofacial abnormalities and to perform the optimal surgical procedures for HFS, we are to review the prevalence, pathophysiology, differential diagnosis, details of each treatment modality, usefulness of brainstem auditory evoked potentials monitoring, debates on the facial EMG, clinical course, and complications from the literature published from 1995 to the present time.

Intraoperative Neurophysiological Monitoring : A Review of Techniques Used for Brain Tumor Surgery in Children

  • Kim, Keewon;Cho, Charles;Bang, Moon-suk;Shin, Hyung-ik;Phi, Ji-Hoon;Kim, Seung-Ki
    • Journal of Korean Neurosurgical Society
    • /
    • 제61권3호
    • /
    • pp.363-375
    • /
    • 2018
  • Intraoperative monitoring (IOM) utilizes electrophysiological techniques as a surrogate test and evaluation of nervous function while a patient is under general anesthesia. They are increasingly used for procedures, both surgical and endovascular, to avoid injury during an operation, examine neurological tissue to guide the surgery, or to test electrophysiological function to allow for more complete resection or corrections. The application of IOM during pediatric brain tumor resections encompasses a unique set of technical issues. First, obtaining stable and reliable responses in children of different ages requires detailed understanding of normal age-adjusted brain-spine development. Neurophysiology, anatomy, and anthropometry of children are different from those of adults. Second, monitoring of the brain may include risk to eloquent functions and cranial nerve functions that are difficult with the usual neurophysiological techniques. Third, interpretation of signal change requires unique sets of normative values specific for children of that age. Fourth, tumor resection involves multiple considerations including defining tumor type, size, location, pathophysiology that might require maximal removal of lesion or minimal intervention. IOM techniques can be divided into monitoring and mapping. Mapping involves identification of specific neural structures to avoid or minimize injury. Monitoring is continuous acquisition of neural signals to determine the integrity of the full longitudinal path of the neural system of interest. Motor evoked potentials and somatosensory evoked potentials are representative methodologies for monitoring. Free-running electromyography is also used to monitor irritation or damage to the motor nerves in the lower motor neuron level : cranial nerves, roots, and peripheral nerves. For the surgery of infratentorial tumors, in addition to free-running electromyography of the bulbar muscles, brainstem auditory evoked potentials or corticobulbar motor evoked potentials could be combined to prevent injury of the cranial nerves or nucleus. IOM for cerebral tumors can adopt direct cortical stimulation or direct subcortical stimulation to map the corticospinal pathways in the vicinity of lesion. IOM is a diagnostic as well as interventional tool for neurosurgery. To prove clinical evidence of it is not simple. Randomized controlled prospective studies may not be possible due to ethical reasons. However, prospective longitudinal studies confirming prognostic value of IOM are available. Furthermore, oncological outcome has also been shown to be superior in some brain tumors, with IOM. New methodologies of IOM are being developed and clinically applied. This review establishes a composite view of techniques used today, noting differences between adult and pediatric monitoring.

소뇌-교각종양 수술시 수술 중 전기생리학적 신경감시에 따른 수술 후 기능적 결과 (Intraoperative Neurophysiologic Monitoring and Functional Outcome in Cerebellopontine Angle Tumor Surgery)

  • 이상구;박관;박익성;서대원;엄동옥;남도현;이정일;김종수;홍승철;신형진;어환;김종현
    • Journal of Korean Neurosurgical Society
    • /
    • 제29권6호
    • /
    • pp.778-785
    • /
    • 2000
  • Objectives : Intraoperative neurophysiologic monitoring(INM) is a well known useful method to reduce intraoperative neurological complications during neurosurgical procedures. Furthermore, INM is required in most cerebellopontine angle(CPA) surgery because cranial nerves or brain stem injuries can result in serious complications. Object of this study is to the correlation between the changes of intraoperative monitoring modalities during cerebellopontine angle tumor surgery and post-operative functional outcomes in auditory and facial functions. Material and Methods : Fifty-seven patients who underwent intraoperative neurophysiologic monitoring during CPA tumor surgery were retrospectively reviewed. Their lesions were as follows ; vestibular schwannomas in 42, other cranial nerve schwannomas in seven, meningiomas in five and cysts in three cases. Pre- and postoperative audiologic examinations and facial nerve function tests were performed in all patients. Intraoperative neurophysiologic monitoring modalities includes brainstem auditory evoked potentials(BAEP) and facial electromyographies(EMG). We compared the events of INM during CPA tumor surgeries with the outcomes of auditory and facial nerve functions. Results : The subjects who had abnormal changes during CPA tumor surgery were twenty cases with BAEP changes and facial EMG changes in twenty one cases. The changes of intraoperative neurophysiologic monitoring did not always result in poor functional outcomes. However, most predictable intraoperative monitoring changes were wave III-V complex losses in BAEP and continuous neurotonic activities in facial EMG. Conclusion : These results indicate that intraoperative neurophysiologic monitoring in CPA tumor surgery usually provide predictive value for postoperative functional outcomes.

  • PDF