• Title/Summary/Keyword: BrainHex

Search Result 2, Processing Time 0.017 seconds

An Analysis of Player Types using Data Clustering in Gamification (데이터 클러스터링을 활용한 게이미피케이션 환경에서의 플레이어 유형 분석)

  • Park, Sungjin;Kang, Bumsoo;Kim, Sungsoo;Kim, Sangkyun
    • Journal of Korea Game Society
    • /
    • v.17 no.6
    • /
    • pp.77-88
    • /
    • 2017
  • The purpose of this study is to compare existing player type theories using data clustering. For the study, 235 result data of the gamified class in second semester of A university at 2016 used. This study applied K-means and Silhouette to decide the appropriate number of clusters. The player types applied in this study are Bartle's 2-D and 3-D player types, Ferro's five types, and BrainHex. According to the results, Bartle's 2D player type was found to be the best in perspective of data clustering. This study also analyzed the distribution of characteristics for each player types. The results of this study are expected to have an impact on player analysis, which is used in the application of gamification or in the development process.

Stress distribution of implants with external and internal connection design: a 3-D finite element analysis (내측 연결 및 외측 연결 방식으로 설계된 임플란트의 3차원적 유한요소 응력 분석)

  • Chung, Hyunju;Yang, Sung-Pyo;Park, Jae-Ho;Park, Chan;Shin, Jin-Ho;Yang, Hongso
    • Journal of Dental Rehabilitation and Applied Science
    • /
    • v.33 no.3
    • /
    • pp.189-198
    • /
    • 2017
  • Purpose: This study aims to analyze the stress distribution of mandibular molar restoration supported by the implants with external hex and internal taper abutment connection design. Materials and Methods: Models of external connection (EXHEX) and internal connection (INCON) implants, corresponding abutment/crowns, and screws were developed. Supporting edentulous mandibular bony structures were designed. All the components were assembled and a finite element analysis was performed to predict the magnitude and pattern of stresses generated by occlusal loading. A total of 120 N static force was applied both by axial (L1) and oblique (L2) direction. Results: Peak von Mises stresses produced in the implants by L2 load produced 6 - 15 times greater than those by L1 load. The INCON model showed 2.2 times greater total amount of crown cusp deflection than the EXHEX model. Fastening screw in EXHEX model and upside margin of implant fixture in INCON model generated the peak von Mises stresses by oblique occlusal force. EXHEX model and INCON model showed the similar opening gap between abutment and fixture, but intimate sealing inside the contact interface was maintained in INCON model. Conclusion: Oblique force produced grater magnitudes of deflection and stress than those by axial force. The maximum stress area at the implant was different between the INCON and EXHEX models.