• Title/Summary/Keyword: Brain-stem tumor

Search Result 51, Processing Time 0.028 seconds

Leksell Frame-Based Stereotactic Biopsy for Infratentorial Tumor : Practical Tips and Considerations

  • Tae-Kyu Lee;Sa-Hoe Lim;Jangshik Jeong;Su Jee Park;Yeong Jin Kim;Kyung-Sub Moon;In-Young Kim;Shin Jung;Tae-Young Jung
    • Journal of Korean Neurosurgical Society
    • /
    • v.67 no.2
    • /
    • pp.249-256
    • /
    • 2024
  • The Leksell frame-based transcerebellar approach was proposed with the arc support frame attached upside down to the Z coordinate. This study presented practical tips and considerations for obtaining adequate tissue samples for deep-seated cerebellar lesions or lower brainstem lesions specifically those accessible via the cerebellar peduncle. For practical insights, the Leksell coordinate frame G was fixed to prevent the anterior screw implantation within the temporalis muscle, to avoid interference with the magnetic resonance (MR)-adapter, and taking into account the magnetic field of MR in close proximity to the tentorium. After mounting of indicator box, the MR imaging evaluation should cover both the indicator box and the infratentorial region that deviated from it. The coordinates [X, Y, Za, Arc0, Ringa0] obtained from Leksell SurgiPlan® software (Elekta, Stockholm, Sweden) with arc 00 located on the patient's right side were converted to [X, Y, Zb=360-Za, Arc0, Ringb0=Ringa0-1800]. The operation was performed in the prone position under general anesthesia in four patients with deep cerebellar (n=3) and brainstem (n=1) tumors. The biopsy results showed two cases of diffuse large B-cell lymphoma, one metastatic braintumor and one glioblastoma. One patient required frame repositioning as a complication. Drawing upon the methodology outlined in existing literature, we anticipate that imparting supplementary expertise could render the stereotactic biopsy of infratentorial tumors more consistent and manageable for the practitioner, thereby facilitating adequate tissue samples and minimizing patient complications.

Incase of Same Region Treatment by using a Tomotherapy and a Linear Accelerator Absorbed Dose Evaluation of Normal Tissues and a Tumor (토모테라피와 선형가속기를 이용한 동일 부위의 치료 시 종양 및 정상조직의 흡수선량 평가)

  • Cheon, Geum-Seong;Kim, Chang-Uk;Kim, Hoi-Nam;Heo, Gyeong-Hun;Song, Jin-Ho;Hong, Joo-Yeong;Jeong, Jae-Yong
    • The Journal of Korean Society for Radiation Therapy
    • /
    • v.22 no.2
    • /
    • pp.97-103
    • /
    • 2010
  • Purpose: Treating same region with different modalities there is a limit to evaluate the total absorbed dose of normal tissues. The reason is that it does not support to communication each modalities yet. In this article, it evaluates absorbed dose of the patients who had been treated same region by a tomotherapy and a linear accelerator. Materials and Methods: After reconstructing anatomic structure with a anthropomorphic phantom, administrate 45 Gy to a tumor in linac plan system as well as prescribe 15 Gy in tomotherapy plan system for make an ideal treatment plan. After the plan which made by tomoplan system transfers to the oncentra plan system for reproduce plan under the same condition and realize total treatment plan with summation 45 Gy linac treatment plan. To evaluate the absorbed dose of two different modalities, do a comparative study both a simple summation dose values and integration dose values. Then compare and analyze absorbed dose of normal tissues and a tumor with the patients who had been exposured radiation by above two differents modalities. Results: The result of compared data, in case of minimum dose, there are big different dose values in spleen (12.4%). On the other hand, in case of the maximum dose, it reports big different in a small bowel (10.2%) and a cord (5.8%) in head & neck cancer patients, there presents that oral (20.3%), right lens (7.7%) in minimum dose value. About maximum dose, it represents that spinal (22.5), brain stem (12%), optic chiasm (8.9%), Rt lens (11.5%), mandible (8.1%), pituitary gland (6.2%). In case of Rt abdominal cancer patients, there represents big different minimum dose as Lt kidney (20.3%), stomach (8.1%) about pelvic cancer patients, it reports there are big different in minimum dose as a bladder (15.2%) as well as big different value in maximum dose as a small bowel (5.6%), a bladder (5.5%) in addition, making treatment plan it is able us to get. Conclusion: In case of comparing both simple summation absorbed dose and integration absorbed dose, the minimum dose are represented higher as well as the maximum dose come out lower and the average dose are revealed similar with our expected values data. It is able to evaluate tumor & normal tissue absorbed dose which could had been not realized by treatment plan system. The DVH of interesting region are prescribed lower dose than expected. From now on, it needs to develop the new modality which are able to realize exact dose distribution as well as integration absorbed dose evaluation in same treatment region with different modalities.

  • PDF

Utility Evaluation of Split VMAT Treatment Planning for Nasopharyngeal cancer (비인두암 Split VMAT 치료계획 유용성 평가)

  • Tae Yang Park;Jin Man Kim;Dong Yeol Kwon;Jun Taek Lim;Jong Sik Kim
    • The Journal of Korean Society for Radiation Therapy
    • /
    • v.34
    • /
    • pp.13-20
    • /
    • 2022
  • Purpose : IMRT using Tomotherapy during nasopharyngeal cancer radiation therapy irradiate an accurate dose to tumor tissues and is effective to reduce a dose rapidly in normal tissues. However, this has high MU and long Beam On Time. This study aims to analyze differences in tumors, normal tissues and low-dose distributions and the efficiency of Split VMAT after applying Helical IMRT (Tomotherapy), VMAT (Linac : 2Arc) and Split VMAT (Linac : 4Arc) plans. Materials and Methods : This study targeted ten nasopharyngeal cancer patients of this hospital and compared three treatment plans (Helical IMRT, VMAT, Split VMAT). For Helical IMRT planning, Precision® (Version 1.1.1.1, Accuray, USA) was used, and for VMAT and Split VMAT planning, Pinnacle (Version 9.10, Philips, USA) was used. The total dose applied was 38.4 Gy / 32 Gy (Daily Dose 2.4 Gy (GTV + 0.3 cm) / 2 Gy (CTV + 0.3 cm) 16Fx), and for GTV + 0.3 cm (P_GTV), 95% of V38.4Gy was prescribed. VMAT with an angle of 360° 2Arc was applied, and for Split VMAT, the field was divided into the right, the left, the top and the bottom and an angle of 360° 4Arc, 6MV was set. For evaluating the quality of the treatment plans, differences in tumors, normal tissues and low-dose area were compared, and Beam On Time was measured to analyze the efficiency. Results : When calculating the mean values of evaluation items of the three treatment plans (Helical IMRT, VMAT, Split VMAT) for the patients, the H.I (Homogeneity Index) of P_GTV was 1.04, 1.11 and 1.1 respectively, and the C.I (Confomity Index) of P_CTV was 1.03, 0.99 and 1.00 respectively. The mean dose of RT Parotid Gland (Gy) was 14.54, 17.06 and 14.76 respectively, the mean dose of LT Parotid Gland (Gy) was 14.32, 17.32 and 15.09 respectively, the maximum dose of P_Cord (Spinal Cord + 0.3 cm) (Gy) was 20.57, 22.59 and 21.06 respectively, and the maximum dose of Brain Stem (Gy) was 22.35, 23.99 and 21.68 respectively. The 50% isodose curve (cc) was 1332, 1132.5 and 1065.2 respectively. Beam On Time (sec) was 373.7, 130.7 and 254.4 respectively. Conclusion : Displaying a similar treatment plan quality to Helical IMRT, which is used a lot for head and neck treatment, Split VMAT reduced the low-dose area and Beam On Time and produced a better result than VMAT. Therefore, it is considered that Split VMAT is effective not only for nasopharyngeal cancer but also for other head and neck cancers.

Overview of Transforming Growth Factor β Superfamily Involvement in Glioblastoma Initiation and Progression

  • Nana, Andre Wendindonde;Yang, Pei-Ming;Lin, Hung-Yun
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.16 no.16
    • /
    • pp.6813-6823
    • /
    • 2015
  • Glioblastoma, also known as glioblastoma multiforme (GBM), is the most aggressive of human brain tumors and has a stunning progression with a mean survival of one year from the date of diagnosis. High cell proliferation, angiogenesis and/or necrosis are histopathological features of this cancer, which has no efficient curative therapy. This aggressiveness is associated with particular heterogeneity of the tumor featuring multiple genetic and epigenetic alterations, but also with implications of aberrant signaling driven by growth factors. The transforming growth factor ${\beta}$ ($TGF{\beta}$) superfamily is a large group of structurally related proteins including $TGF{\beta}$ subfamily members Nodal, Activin, Lefty, bone morphogenetic proteins (BMPs) and growth and differentiation factor (GDF). It is involved in important biological functions including morphogenesis, embryonic development, adult stem cell differentiation, immune regulation, wound healing and inflammation. This superfamily is also considered to impact on cancer biology including that of GBM, with various effects depending on the member. The $TGF{\beta}$ subfamily, in particular, is overexpressed in some GBM types which exhibit aggressive phenotypes. This subfamily impairs anti-cancer immune responses in several ways, including immune cells inhibition and major histocompatibility (MHC) class I and II abolishment. It promotes GBM angiogenesis by inducing angiogenic factors such as vascular endothelial growth factor (VEGF), plasminogen activator inhibitor (PAI-I) and insulinlike growth factor-binding protein 7 (IGFBP7), contributes to GBM progression by inducing metalloproteinases (MMPs), "pro-neoplastic" integrins (${\alpha}v{\beta}3$, ${\alpha}5{\beta}1$) and GBM initiating cells (GICs) as well as inducing a GBM mesenchymal phenotype. Equally, Nodal promotes GICs, induces cancer metabolic switch and supports GBM cell proliferation, but is negatively regulated by Lefty. Activin promotes GBM cell proliferation while GDF yields immune-escape function. On the other hand, BMPs target GICS and induce differentiation and sensitivity to chemotherapy. This multifaceted involvement of this superfamily in GBM necessitates different strategies in anti-cancer therapy. While suppressing the $TGF{\beta}$ subfamily yields advantageous results, enhancing BMPs production is also beneficial.

Selective Beam Shielding Method of Gamma-Knife Unit Using Various Plugging Patterns (다양한 Plugging 형태를 이용한 감마나이프의 선택적 빔 차폐 방법)

  • Jang Geon Ho;Lim Young Jin;Shin Dong Oh;Choi Doo Ho;Hong Seong Eon;Leem Won
    • Radiation Oncology Journal
    • /
    • v.11 no.2
    • /
    • pp.439-448
    • /
    • 1993
  • The B-type gamma knife unit was installed at Kyung-Hee University Hospital in March 1992. The selective beam plugging method can be used to reduce the low percentage isodose profiles of normal sensitive organ and to modify the isodose curves of treatment volume for better shaping of the target volume. For representing the changes of the low percentage isodose profiles, the variations of dose distribution for several cases were discussed in this paper. The film dosimetry was peformed for the evaluation of calculated isodose profiles predicted by KULA dose planning system. The results were verified by RFA-3 automatic densitometry. The clinical application of selective beam shielding method was peformed in 17 patients in 100 patients who have undergone gamma knife radiosurgery for a year. The calculated and the measured isodose profiles for the high percentage regions were well consistent with each other. When the target of pituitary tumor is macro-size, the selective beam shielding method is the most applicable method. When the target size, however, is small, the correct selection of the proper helmet size is very important. All patients were exposed almost about 3~12 Gy for brain stem, and 3~11.2 Gy for optic apparatus. It is recommended that the same or other plugging patterns with multiple isocenters should be used for protection of the radiosensitive normal structures with precise treatment of CNS lesions.

  • PDF

Evaluation of Dose Volume and Radiobiological Indices by the Dose Calculation Grid Size in Nasopharyngeal Cancer VMAT (비 인두암 체적 조절 호형 방사선 치료의 선량 계산 격자 크기에 따른 선량 체적 지수와 방사선 생물학적 지수의 평가)

  • Kang, Dong-Jin;Jung, Jae-Yong;Shin, Young-Joo;Min, Jung-Whan;Shim, Jae-Goo;Park, So-Hyun
    • Journal of radiological science and technology
    • /
    • v.43 no.4
    • /
    • pp.265-272
    • /
    • 2020
  • The purpose of this study was to investigate the dose-volume indices and radiobiological indices according to the change in dose calculation grid size during the planning of nasopharyngeal cancer VMAT treatment. After performing the VMAT treatment plan using the 3.0 mm dose calculation grid size, dose calculation from 1.0 mm to 5.0 mm was performed repeatedly to obtain a dose volume histogram. The dose volume index and radiobiological index were evaluated using the obtained dose volume histogram. The smaller the dose calculation grid size, the smaller the mean dose for CTV and the larger the mean dose for PTV. For OAR of spinal cord, brain stem, lens and parotid gland, the mean dose did not show a significant difference according to the change in dose calculation grid size. The smaller the grid size, the higher the conformity of the dose distribution as the CI of the PTV increases. The CI and HI showed the best results at 3.0 mm. The smaller the dose calculation grid size, the higher the TCP of the PTV. The smaller the dose calculation grid size, the lower the NTCP of lens and parotid. As a result, when performing the nasopharynx cancer VMAT plan, it was found that the dose calculation grid size should be determined in consideration of dose volume index, radiobiological index, and dose calculation time. According to the results of various experiments, it was determined that it is desirable to apply a grid size of 2.0 - 3.0 mm.

Usefulness of Non-coplanar Helical Tomotherapy Using Variable Axis Baseplate (Variable Axis Baseplate를 이용한 Non-coplanar 토모테라피의 유용성)

  • Ha, Jin-Sook;Chung, Yoon-Sun;Lee, Ik-Jae;Shin, Dong-Bong;Kim, Jong-Dae;Kim, Sei-Joon;Jeon, Mi-Jin;Cho, Yoon-Jin;Kim, Ki-Kwang;Lee, Seul-Bee
    • The Journal of Korean Society for Radiation Therapy
    • /
    • v.23 no.1
    • /
    • pp.31-39
    • /
    • 2011
  • Purpose: Helical Tomotherapy allows only coplanar beam delivery because it does not allow couch rotation. We investigated a method to introduce non-coplanar beam by tilting a patient's head for Tomotherapy. The aim of this study was to compare intrafractional movement during Tomotherapy between coplanar and non-coplanar patient's setup. Materials and Methods: Helical Tomotherapy was used for treating eight patients with intracranial tumor. The subjects were divided into three groups: one group (coplanar) of 2 patients who lay on S-plate with supine position and wore thermoplastic mask for immobilizing the head, second group (non-coplanar) of 3 patients who lay on S-plate with supine position and whose head was tilted with Variable Axis Baseplate and wore thermoplastic mask, and third group (non-coplanar plus mouthpiece) of 3 patients whose head was tilted and wore a mouthpiece immobilization device and thermoplastic mask. The patients were treated with Tomotherapy after treatment planning with Tomotherapy Planning System. Megavoltage computed tomography (MVCT) was performed before and after treatment, and the intrafractional error was measured with lateral(X), longitudinal(Y), vertical(Z) direction movements and vector ($\sqrt{x^2+y^2+z^2}$) value for assessing overall movement. Results: Intrafractional error was compared among three groups by taking the error of MVCT taken after the treatment. As the correction values (X, Y, Z) between MVCT image taken after treatment and CT-simulation image are close to zero, the patient movement is small. When the mean values of movement of each direction for non-coplanar setup were compared with coplanar setup group, X-axis movement was decreased by 13%, but Y-axis and Z-axis movement were increased by 109% and 88%, respectively. Movements of Y-axis and Z-axis with non-coplanar setup were relatively greater than that of X-axis since a tilted head tended to slip down. The mean of X-axis movement of the group who used a mouthpiece was greater by 9.4% than the group who did not use, but the mean of Y-axis movement was lower by at least 64%, and the mean of Z-axis was lower by at least 67%, and the mean of Z-axis was lower by at least 67%, and the vector was lower by at least 59% with the use of a mouthpiece. Among these 8 patients, one patient whose tumor was located on left frontal lobe and left basal ganglia received reduced radiation dose of 38% in right eye, 23% in left eye, 30% in optic chiasm, 27% in brain stem, and 8% in normal brain with non-coplanar method. Conclusion: Tomotherapy only allows coplanar delivery of IMRT treatment. To complement this shortcoming, Tomotherapy can be used with non-coplanar method by artificially tilting the patient's head and using an oral immobilization instrument to minimize the movement of patient, when intracranial tumor locates near critical organs or has to be treated with high dose radiation.

  • PDF

Dose Planning of Forward Intensity Modulated Radiation Therapy for Nasopharyngeal Cancer using Compensating Filters (보상여과판을 이용한 비인강암의 전방위 강도변조 방사선치료계획)

  • Chu Sung Sil;Lee Sang-wook;Suh Chang Ok;Kim Gwi Eon
    • Radiation Oncology Journal
    • /
    • v.19 no.1
    • /
    • pp.53-65
    • /
    • 2001
  • Purpose : To improve the local control of patients with nasopharyngeal cancer, we have implemented 3-D conformal radiotherapy and forward intensity modulated radiation therapy (IMRT) to used of compensating filters. Three dimension conformal radiotherapy with intensity modulation is a new modality for cancer treatments. We designed 3-D treatment planning with 3-D RTP (radiation treatment planning system) and evaluation dose distribution with tumor control probability (TCP) and normal tissue complication probability (NTCP). Material and Methods : We have developed a treatment plan consisting four intensity modulated photon fields that are delivered through the compensating tilters and block transmission for critical organs. We get a full size CT imaging including head and neck as 3 mm slices, and delineating PTV (planning target volume) and surrounding critical organs, and reconstructed 3D imaging on the computer windows. In the planning stage, the planner specifies the number of beams and their directions including non-coplanar, and the prescribed doses for the target volume and the permissible dose of normal organs and the overlap regions. We designed compensating filter according to tissue deficit and PTV volume shape also dose weighting for each field to obtain adequate dose distribution, and shielding blocks weighting for transmission. Therapeutic gains were evaluated by numerical equation of tumor control probability and normal tissue complication probability. The TCP and NTCP by DVH (dose volume histogram) were compared with the 3-D conformal radiotherapy and forward intensity modulated conformal radiotherapy by compensator and blocks weighting. Optimization for the weight distribution was peformed iteration with initial guess weight or the even weight distribution. The TCP and NTCP by DVH were compared with the 3-D conformal radiotherapy and intensitiy modulated conformal radiotherapy by compensator and blocks weighting. Results : Using a four field IMRT plan, we have customized dose distribution to conform and deliver sufficient dose to the PTV. In addition, in the overlap regions between the PTV and the normal organs (spinal cord, salivary grand, pituitary, optic nerves), the dose is kept within the tolerance of the respective organs. We evaluated to obtain sufficient TCP value and acceptable NTCP using compensating filters. Quality assurance checks show acceptable agreement between the planned and the implemented MLC(multi-leaf collimator). Conclusion : IMRT provides a powerful and efficient solution for complex planning problems where the surrounding normal tissues place severe constraints on the prescription dose. The intensity modulated fields can be efficaciously and accurately delivered using compensating filters.

  • PDF

Clinical Application of 3-D Conformal Radiotherapy for Carcinoma of the Ethmoid Sinus : I. Comparative Analysis Between Conventional 2-D and 3-D Conformal Plans (사골동 종양의 3-차원 입체조형치료 : I. 2차원 치료계획과 3차원 치료계획의 비교분석)

  • Lee Sangwook;Kim Gwi Eon;Keum Ki Chang;Park Hee Chul;Cho Jae Ho;Han Soung Uk;Lee Kang Kyu;Suh Chang Ok;Hong Won Pyo;Park In Yong
    • Radiation Oncology Journal
    • /
    • v.15 no.4
    • /
    • pp.287-296
    • /
    • 1997
  • Purpose : This is study of whether 3-D conformal radiotherapy for carcino-mas of the ethmoid sinus were better than those treated with conventional 2-D plan, Materials and Methods : The 3-D conformal treatment Plans were compared with conventional 2-D plans in 4 patients with malignancy of the ethmoid sinus. Isodose distribution, dose statistics, and dose volume histogram of the planning target volume were used to evaluate differences between 2-D and 3-D plans. In addition. the risk of radiation exposure of surrounding normal critical organs are evaluated by means of point dose calculation and dose volume histogram. Results : 3-D conformal treatment plans for each patient that the better tumor coverages by the planning target volume with improved dose homo-geneity, compared to 2-D conventional treatment Plans in the same Patient. On the other hand, the radiation dose distributions to the surrounding nor-mal tissue organs, such as the orbit and optic nerves are not significantly reduced with our technique, but a substantial sparing in the brain stem and optic chiasm for each patient. Conclusion : Our findings represented the potential advantage of 3-D treatment planning for dose homogeniety as well as sparing of the normal tissue surrounding the tumor. However, further investigational studies are required to define the clinical benefit.

  • PDF

Multiple Daily Fractionated RT for Malignant Glioma (악성 성상세포종과 다형성 교아종 치료에 있어서 다분할 방사선 치료와 단순분할 방사선치료에 대한 성적비교)

  • Yang Kang Mo;Chang Hye Sook;Ahn Seoung Do;Choi Eun Kyung
    • Radiation Oncology Journal
    • /
    • v.12 no.2
    • /
    • pp.151-158
    • /
    • 1994
  • Since Jan. 1992, authors have conducted a pilot study to treat malignant glioma with multiple daily fractionated(MDF) radiation therapy and this paper presents the outcome compared MDF to conventional factionated(CF) radiation therapy Between Sep. 1989 and Jan. 1993, forty three patients with high grade glioma of brain except brain stem glioma were treated: nineteen patients were treated with CF radiation therapy and 24 patients were treated with MDF radiation therapy. In CF radiation therapy, total dose was 6300cGy/35fx in 7 weeks, which 5040cGy was delivered to the initial target volume and 1260cGy to reduced target volume. And in MDF radiation therapy, total dose was 6400cGy/40fx in 4 weeks, which 3200cGy was delivered to the initial target volume as 160cGy 2 times daily 6hr apart. All patients had histologically confirmed anaplastic astrocytoma(AA) of glioblastoma multiforme (GBM) with stereotactic biopsy or craniotomy for subtotal or gross tumor resection. The range of follow-up was 7 months to 4 years with a median follow-up of 9 months. The Median survival from surgery was 9 months for all patients. The median survival was 9 months and 10 months for MDF group and CF group and 10 months and 9.5 months for glioblastoma multiforme and anaplastic astrocytoma, respectively. In 36 patients with follow-up CT scan or MRI scan, disease status was evaluated according to treatment groups, Four patients(GBM:3, AA:1) of 21 patients in MDF group, were alive with no evidence of disease, while none of patient was alive with no evidence of disease in CF group. The progression of disease had occurred in 20 patients, 11 patients and 9 patients in MDF group and CF group, respectively All of these patients showed in-field progression of disease, Four of 11 patients($27\%$) in MDF group showed the new leasion outside of the treatment field, while 5 of 9 patients($56\%$) in CF group. In our study the prognosis was not influenced by age, KPS, grade, extent of surgery and different fractional scheduled radiation therapy. Authors concluded that MDF regimen was well tolerated and shortened the treatment period from 7 weeks to 4 weeks without compromising results. We believe that further follow-up is needed to assess the role of MDF.

  • PDF