• Title/Summary/Keyword: Brain wave (alpha)

Search Result 115, Processing Time 0.021 seconds

The Study of Cognitive Function and EEG Spectrum Difference between Allergic Rhinitis and Normal Children (뇌파측정을 이용한 비염 환아와 정상아의 주의집중력에 관한 연구)

  • Lee, Nam-Yeol;Kim, Yun-Hee;Han, Jae-Kyung
    • The Journal of Pediatrics of Korean Medicine
    • /
    • v.21 no.2
    • /
    • pp.1-12
    • /
    • 2007
  • Objectives : Allergic children have known to have multiple behavior problems. Among them, attentional ability disorder is one of the most common problems. This study is to examine relationship between learning ability and allergic rhinitis by analyzing EEG status of children. Methods : We analyzed cognitive functions of two different children groups; 21 children with allergic rhinitis and 19 normal children with CANS 3000(Central & Autonomic Nervous System, LAXTHA Inc., Korea), cognitive functions assessment program by EEG. Results : 1. According to mean active EEG rhythm of Theta, Alpha, SMR, M-beta, there were no significant difference between allergic rhinitis and the normal group. 2. According to mean active EEG rhythm of right H-beta, Gamma wave allergic rhinitis group's value was significantly higher than that of the normal group. 3. According to mean cognitive strength, response, concentration, left / right brain activity and learning ability score, there were no significant difference between allergic rhinitis and the normal group. 4. According to mean workload score, allergic rhinitis group's value was significantly higher than that of the normal group. Conclusions : It is likely that allergic rhinitis group, which showed relatively high frequency EEG rhythm, is more fragile to stress and less active on mental processing. Along side with physical examination, psychological assessment should also be conjugated on treating children with allergic rhinitis.

  • PDF

A Comparison of EEG and Forearms EMG Activity depend on the Type of Smartphone when Inputting Text Messages (스마트폰 유형에 따른 문자 입력 시 뇌파 및 아래팔 근활성도 비교)

  • Lee, Hyoungsoo;Go, Gyeongjin;Kim, Jinwon;Park, Songyi;Park, Jiseon;Park, Jinri;Seok, Hyer;Yang, Gureum;Yang, Sieun;Yun, Gwangoh
    • Journal of The Korean Society of Integrative Medicine
    • /
    • v.2 no.2
    • /
    • pp.79-88
    • /
    • 2014
  • Purpose: This study investigated the relationship between smartphone addiction propensities and compare muscle activity of the forearms and brain wave depend on the type of smartphone when inputting text messages. Method: We used an EMG to measure the change in muscle activity by attaching pads to the four muscles in both forearms of all 16 participants. We simultaneously conducted EEG measurements by observing the changes in alpha and beta waves recorded from electrode attached to both ears and the forehead of the participants. The participants had to input a given text using three different types of smartphones for ten minutes each. Result: The comparison of the EMG when inputting text involved a one way analysis of variance and the results showed that the iPad3 was highest for muscle activity followed by GALAXY Note2 and iPhone4. For EEG measurement, a one way analysis of variance was also used and the results showed iPhone4 was higest followed by GALAXY Note2 and finally iPad3 for EEG stress score. Conclusion: The results are thought to be used as reference data for smart phone users.

The Neuroanatomy and Psychophysiology of Attention (집중의 신경해부와 정신생리)

  • Lee, Sung-Hoon;Park, Yun-Jo
    • Sleep Medicine and Psychophysiology
    • /
    • v.5 no.2
    • /
    • pp.119-133
    • /
    • 1998
  • Attentional processes facilitate cognitive and behavioral performance in several ways. Attention serves to reduce the amount of information to receive. Attention enables humans to direct themselves to appropriate aspects of external environmental events and internal operations. Attention facilitates the selection of salient information and the allocation of cognitive processing appropriate to that information. Attention is not a unitary process that can be localized to a single neuroanatomical region. Before the cortical registration of sensory information, activation of important subcortical structures occurs, which is called as an orienting response. Once sensory information reaches the sensory cortex, a large number of perceptual processes occur, which provide various levels of perceptual resolution of the critical features of the stimuli. After this preattentional processing, information is integrated within higher cortical(heteromodal) systems in inferior parietal and temporal lobes. At this stage, the processing characteristics can be modified, and the biases of the system have a direct impact on attentional selection. Information flow has been traced through sensory analysis to a processing stage that enables the new information to be focused and modified in relation to preexisting biases. The limbic and paralimbic system play significant roles in modulating attentional response. It is labeled with affective salience and is integrated according to ongoing pressures from the motivational drive system of the hypothalamus. The salience of information greatly influences the allocation of attention. The frontal lobe operate response selection system with a reciprocal interaction with both the attention system of the parietal lobe and the limbic system. In this attentional process, the search with the spatial field is organized and a sequence of attentional responses is generated. Affective, motivational and appectitive impulses from limbic system and hypothalamus trigger response intention, preparation, planning, initiation and control of frontal lobe on this process. The reticular system, which produces ascending activation, catalyzes the overall system and increases attentional capacity. Also additional energetic pressures are created by the hypothalamus. As psychophysiological measurement, skin conductance, pupil diameter, muscle tension, heart rate, alpha wave of EEG can be used. Event related potentials also provide physiological evidence of attention during information process. NI component appears to be an electrophysiological index of selective attention. P3 response is developed during the attention related to stimulus discrimination, evaluation and response.

  • PDF

Spinal Motor Neuron and Electroencephalogram Changes after Different Kinesio Taping Method Therapy in normal People (키네시오 테이핑 적용 방식이 정상인의 척수운동신경원 흥분성과 뇌파 변화에 미치는 영향)

  • Bae, Sea-Hyun;Kim, Gi-Do;Kim, Kyung-Yoon
    • The Journal of the Korea Contents Association
    • /
    • v.13 no.11
    • /
    • pp.791-799
    • /
    • 2013
  • This study to evaluate the spinal motor neuron and electroencephalogram effects of applying different kinesio taping method therapy in normal people. The study was performed on 16 healthy adults. We divide two group; group I(n=8); Tape along muscle, group II(n=8); Tape across muscle. Two different method taping were applied to gastrocnemius in two weeks. Spinal motor neuron measurement to evoke H-reflex, the posterior tibial nerve was stimulated. Electroencephalogram measurement for ${\beta}$-SMR, attached to active electrode C3, Cz, C4. The H-reflex, ${\beta}$-SMR results were measured before, immediately, one week later and two week later after the apply taping. The results of this study, spinal motor neuron change of group I were decreased ${\alpha}$-motor neuron and the duration time longer than group II(p<.05). Electroencephalogram change of group I were increased ${\beta}$-SMR and the duration time longer than group II(p<.05). Thus, we knew the taping along muscle was ${\beta}$-SMR brain wave more active and reduces the activity of spinal motor neuron.

Analysis of Acoustic Psychology of City Traffic and Nature Sounds (도심 교통음과 자연의 소리에 대한 음향심리 분석)

  • Kyon, Doo-Heon;Bae, Myung-Jin
    • The Journal of the Acoustical Society of Korea
    • /
    • v.28 no.4
    • /
    • pp.356-362
    • /
    • 2009
  • In modern society, most people of the world are densely populated in cities so that the traffic sound has a very significant meaning. people tend to classify traffic sound as a noise pollution while they are likely to categorize most nature sound as positive. In this paper, we applied various forms of FFT filters into white noise belonged in nature sound to find frequency characteristics of white noise which preferred by people and confirm its correlation with nature sound. In addition, we conducted an analysis through the comparison of various traffic and nature sound waveforms and spectra. As a result of analysis, the traffic sound have characteristics which sound energy had concentrated on specific frequency bandwidth and point of time compared to nature sound. And we confirmed the fact that these characteristics had negative elements to which could affect to people. Lastly, by letting the subjects listen directly to both traffic and nature sound through brainwave experiment using electrode, the study measured the energy distribution of alpha waves and beta waves. As a result of experiments, it has been noted that urban sound created a noticeably larger amount of beta waves than nature sound; on the contrary, nature sound generated positive alpha waves. These results could directly confirm the negative effects of traffic sound and the positive effects of nature sound.