• Title/Summary/Keyword: Brain transport

Search Result 117, Processing Time 0.025 seconds

A Study on the Energy Planning Technique of Smart Green City : Focus on Application Condition in Multi-functional Administrative City, Korea (에너지 측면의 스마트 그린시티 계획기법에 관한 연구 : 행복도시의 적용실태를 중심으로)

  • Oh, Deog-Seong;Park, So-Yeon;Lee, Seo-Jeong
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.16 no.9
    • /
    • pp.6368-6375
    • /
    • 2015
  • The goal of this research is to identify the energy planning techniques of Smart Green City and to establish the realized plan through the analysis of Multi-functional Administrative City. For the research, eighteen planning techniques were derived and categorized into three sectors and six basic direction through literature review and Brain-storming analysis considering correlation between three goals of Smart Green City and expectation of planning technique. And Multi-functional Administrative City was analyzed for the current status of application of planning techniques focus on two application aspects. In conclusion, 'Establishing Integrated Management Center for Urban Energy', 'Building Energy Management System', 'Building Automation System', 'Green Transport System', 'Intelligent Transport System', 'Introduction of Eco-friendly Transportation' planning techniques in reduction of building energy consumption sector and green-intelligent transport system sector were identified as important techniques for Smart Green City.

Interaction of CLIP-170, a Regulator of Microtubule Plus End Dynamics, with Kinesin 1 via KIF5s (미세소관의 plus end dynamics를 조절하는 CLIP-170과 kinesin 1의 KIF5s를 통한 결합)

  • Jang, Won Hee;Jeong, Young Joo;Lee, Won Hee;Kim, Mooseong;Kim, Sang-Jin;Urm, Sang-Hwa;Seog, Dae-Hyun
    • Journal of Life Science
    • /
    • v.27 no.6
    • /
    • pp.673-679
    • /
    • 2017
  • Microtubules are long rods in the cytoplasm of cells that plays a role in cell motility and intracellular transport. Microtubule-based transport by motor proteins is essential in intracellular transport. Kinesin 1 is a molecular motor protein that mediates the intracellular transport of various membranous vesicles, mRNAs, and proteins along microtubules. It is comprised of two heavy chains (KHCs, also called KIF5s) and two light chains (KLCs). KIF5s bear a motor domain in their amino (N)-terminal regions and interact with various cargoes through the cargo-binding domain in their carboxyl (C)-terminal regions. To identify proteins interacting with KIF5B, yeast two-hybrid screening was performed, and a specific interaction with the cytoplasmic linker protein 170 (CLIP-170), a plus end microtubule-binding protein, was found. The coiled-coil domain of CLIP-170 is essential for interactions with KIF5B in the yeast two-hybrid assay. CLIP-170 bound to the cargo-binding domain of KIF5B. Also, other KIF5s, KIF5A and KIF5C, interacted with CLIP-170 in the yeast two-hybrid assay. In addition, glutathione S-transferase (GST) pull-downs showed that KIF5s specifically interacted with CLIP-170. An antibody to KIF5B specifically co-immunoprecipitated CLIP-170 associated with KIF5B from mouse brain extracts. These results suggest that kinesin 1 motor protein may transport CLIP-170 in cells.

Regulation of BDNF release in dopaminergic neurons

  • Jeon, Hong-Seong
    • 한국생물공학회:학술대회논문집
    • /
    • 2003.04a
    • /
    • pp.743-746
    • /
    • 2003
  • The major pathological lesion in Parkinson's disease(PD) is selective degeneration and loss of pigmented dopaminergic neurons in substantia nigra (SN). Although the initial cause and subsequent molecular signaling mechanisms leading to the dopaminergic cell death underlying the PD process is elusive, the potent neurotrophic factors (NTFs), brain derived neurotrophic factor (BDNF) and glial cell line derived neurotrophic factor (GDNF), are known to exert dopaminergic neuroprotection both in vivo and in vitro models of PD employing the neurotoxin, MPTP. BDNF and its receptor, trkB are expressed in SN dopaminergic neurons and their innervation target. Thus, neurotrophins may have autocrine, paracrine and retrograde transport effects on the SN dopaminergic neurons. This study determined the BDNF secretion from SN dopaminergic neurons by ELISA. Regulation of BDNF synthesis/release and changes in signaling pathways are monitored in the presence of free radical donor, NO donor and mitochondrial inhibitors. Also, this study shows that BDNF is able to promote survival and phenotypic differentiation of SN dopaminergic neurons in culture and protect them against MPTP-induced neurotoxicity via MAP kinase pathway.

  • PDF

Interaction of a Kinesin Superfamily Protein 1A (KIF1A) with Calmodulin

  • Seog, Dae-Hyun
    • Journal of Life Science
    • /
    • v.12 no.2
    • /
    • pp.43-46
    • /
    • 2002
  • Kinesin Superfamily Protein 1A (KIF1A) is an anterograde monomeric motor transporting a subset of synaptic vesicle precursors and plays an important role in neuronal function and survival. Here, f have used the yeast two-hybrid system to identify the proteins that interacts with the tail region of KIF1A. Calmodulin was found to interact specifically with the tail region of KIF1A. Calmodulin regulates many diverse cellular functions by modulating the activity of the proteins that interact with it. KIF1A interacts with calmodulin in the yeast two-hybrid assay, which is proved by immunoprecipitation with calmodulin in brain fraction. These results indicate that KIF1A is associated with calmodulin, suggesting that calmodulin may be a key role in the regulation of anterograde transport of synaptic 1 vesicle precursors.

  • PDF

General Pharmacology of PEG-Hemoglobin SB1

  • Kim, Eun-Joo;Lee, Rae-Kyong;Bak, Ji-Yeong;Choi, Gyu-Kap
    • Biomolecules & Therapeutics
    • /
    • v.7 no.2
    • /
    • pp.170-177
    • /
    • 1999
  • PEG-hemoglobin SB1 (SB1), which is a hemoglobin-based oxygen carrier, is intended to use as a safe blood substitute against brain ischemia and stroke. The general pharmacological profiles of SB1 were studied. The doses given were 0, 5, 10, 20 ml/kg and drugs were administered intravenously. The animals used for this study were mouse, rat and guinea pig. SB1 showed no effects on general behavior, motor coordination, spontaneous locomotor activity, hexobarbital sleeping time, anticonvulsant activity, analgesic activity, blood pressure and heart rate, left ventricular peak systolic pressure, left ventricular end diastolic pressure, left ventricular developing pressure, double product, heart rate, coronary flow rate, smooth muscle contraction using guinea pig ileum, gastrointestinal transport, gastric secretion, urinary volume and electrolyte excretion at all doses tested except the decrease of body temperature. These findings demonstrated that SB1 possesses no general pharmacological effects at all doses tested.

  • PDF

Flavonoids: An Emerging Lead in the P-glycoprotein Inhibition

  • Gadhe, Changdev G.;Cho, Seung Joo
    • Journal of Integrative Natural Science
    • /
    • v.5 no.2
    • /
    • pp.72-78
    • /
    • 2012
  • Multidrug resistance is a major obstacle in cancer chemotherapy. Cancer cells efflux chemotherapeutic drug out of cell by means of transporter and reduce the active concentration of it inside cell. Such transporters are member of the ATP binding cassettes (ABC) protein. It includes P-gp, multiple resistant protein (MRP), and breast cancer resistant protein (BCRP). These proteins are widely distributed in the human cells such as kidney, lung, endothelial cells of blood brain barrier etc. However, there are number of drugs developed for it, but most of them are getting transported by it. So, still there is necessity of a good modulator, which could effectively combat the transport of chemotherapeutic agents. Natural products origin modulators were found to be effective against transporter such as flavonoids, which belongs to third generation modulators. They have advantage over synthetic inhibitor in the sense that they have simple structure and abundant in nature. This review focuses on the P-gp structure its architecture, efflux mechanism, herbal inhibitors and their mechanism of action.

Amino Acid Imbalance-Biochemical Mechanism and Nutritional Aspects

  • Park, Byung-Chul
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.19 no.9
    • /
    • pp.1361-1368
    • /
    • 2006
  • Amino acid imbalances refer to the deleterious effects that occur when a second-limiting amino acid or mixture of amino acid lacking a particular limiting amino acid is supplemented in diets marginal in one or more indispensable amino acids. In spite of variation in the conditions that have been used to induce amino acid imbalances, such as protein level in the diet, the extent of difference in total nitrogen content between basal and imbalanced diets, and kinds of amino acids used as imbalancing agents, the conspicuous common features of amino acid imbalances have been a decreased concentration of the limiting amino acid in blood, depression of feed intake and weight gain, and increased dietary content of the limiting amino acid needed to correct the imbalances. There is strong evidence that a decrease in the concentration of a limiting amino acid detected in the anterior prepyriform cortex of the brain is followed by behavioral effects, especially a decrease in feed intake. This might be due to the competition between the limiting amino acid and the amino acids in the imbalancing mixture for transport from blood into brain. One of the biochemical responses of animals fed amino acid imbalanced diets is a rapid decrease in the concentration of the limiting amino acid, which are due in part to an increase in catabolism of the limiting amino acid by the increased activities of enzymes involved in the catabolism of the amino acid. Practically, specific amino acid imbalances could be induced in swine and poultry diets that have been supplemented with lysine, methionine, tryptophan when threonine, isoleucine, valine, etc. are potentially third- or fourth-limiting in diets. In these cases supplementation of the limiting amino acid could be beneficial in preventing the decrease of feed intake that could otherwise occur as a result of amino acid imbalance.

Tracing study for the rabbit eye ball control nerve utilizing the PRV-Ba isolated in the Korea (한국분리산 PRV-Ba를 이용한 가토 안구지배신경의 추적 연구)

  • Park, Il-kwon;Kim, Moo-kang;Shin, Kwang-soon;Lee, Kyung-youl;Song, Chi-won;Lee, Kang-iee;Hyun, Byung-hwa;Chang, Kyu-tae;Jeong, Young-gil
    • Korean Journal of Veterinary Research
    • /
    • v.40 no.3
    • /
    • pp.463-470
    • /
    • 2000
  • Until now peudorabies virus(PRV) has been used a neurotracer, because of it's properties of retrograde & anterograde transport. But it's anterograde transfort is not perfect, so we tested the applicability of the Bartha strain of PRV(PRV-Ba) isolated from South Korea as a neurotracer in the visual system. We performed immunohistochemical study of the rabbit brain after intravitreal injection of the PRV-Ba. After given survival time(24, 48, 72, 96, 120, 144hrs), the brain was removed and processed immunohistochemical stain for PRV-Ba. The strong PRV immunoreactivity(PRV-ir) were almost oberserved contralaterally in oculomotor neurons, fro example Edinger-Westphal nucleus, trigerminal nucleus of pons and peritrigerminal zone but locus of innervating sensitive neurons. The latter were weak positive and selective. PRV-Ba immunoreactive neurons were stained strongly in nucleus compared to cytoplasm. This study suggests that PRV-Ba isolated from South Korea is also a useful neurotracer in the motor innervated system like other PRV-strain.

  • PDF

Characterization of a novel posttranslational modification in polypyrimidine tract-binding proteins by SUMO1

  • Han, Wei;Wang, Lin;Yin, Bin;Peng, Xiaozhong
    • BMB Reports
    • /
    • v.47 no.4
    • /
    • pp.233-238
    • /
    • 2014
  • Polypyrimidine tract-binding protein 1 (PTBP1) and its brain-specific homologue, PTBP2, are associated with pre-mRNAs and influence pre-mRNA processing, as well as mRNA metabolism and transport. They play important roles in neural differentiation and glioma development. In our study, we detected the expression of the two proteins in glioma cells and predicted that they may be sumoylated using SUMOplot analyses. We confirmed that PTBP1 and PTBP2 can be modified by SUMO1 with co-immunoprecipitation experiments using 293ET cells transiently co-expressing SUMO1 and either PTBP1 or PTBP2. We also found that SUMO1 modification of PTBP2 was enhanced by Ubc9 (E2). The mutation of the sumoylation site (Lys137) of PTBP2 markedly inhibited its modification by SUMO1. Interestingly, in T98G glioma cells, the level of sumoylated PTBP2 was reduced compared to that of normal brain cells. Overall, this study shows that PTBP2 is posttranslationally modified by SUMO1.

Isolation, Molecular Phylogeny, and Tissue Distribution of Four cDNAs Encoding the Apolipoprotein Multigene Family in Barred Knifejaw, Oplegnathus fasciatus (Teleostei, Perciformes)

  • Kim, Keun-Yong;Cho, Young-Sun;Kim, Sung-Koo;Nam, Yoon-Kwon
    • Fisheries and Aquatic Sciences
    • /
    • v.11 no.2
    • /
    • pp.88-97
    • /
    • 2008
  • Lipoproteins are complexes of lipids and specific apolipoproteins that are involved in lipid transport and redistribution among various tissues. In this study, we isolated full-length apolipoprotein cDNA sequences encoding apolipoprotein A-I (apoA-I), apoE, apoC-II, and apo-14 kDa in barred knifejaw, Oplegnathus fasciatus. In addition, we reconstructed phylogenetic trees and investigated mRNA tissue distributions. Alignment analyses of amino acid sequences revealed that secondary structures of the polypeptides apoA-I, apoE, and apoC-II in barred knifejaw are well conserved with their teleostean and mammalian counterparts in terms of characteristic tandem repetitive units forming amphipathic ${\alpha}$-helices. Both the sequence alignment data and cleavage sites of apo-14 kDa indicated a clear differentiation between Percomorpha and Cypriniformes. Meanwhile, the phylogenetic trees of apolipoprotein sub-families suggested that the common ancestor prior to the split of the Actinopterygii (ray-finned fishes) and Sarcopterygii (tetrapods) would have possessed the primordial protein-encoding genes. Tissue distribution of each apolipoprotein transcript determined by semi-quantitative RTPCR showed that barred knifejaw apoA-I transcripts were more or less ubiquitously expressed in the liver, intestines, brain, muscle, spleen, and kidney. The most striking difference from previous observations on barred knifejaw was the ubiquitous expression of apoE across all somatic tissues. Barred knifejaw apoC-II showed tissue-specific expression in the liver and intestines, while the liver and brain were the major sites of apo-14kDa mRNA synthesis.