• Title/Summary/Keyword: Brain sexual differentiation

Search Result 6, Processing Time 0.023 seconds

Effects of Polychlorinated Biphenyls on the Expression of KAP3 Gene Involved in the 'Critical Period' of Rat Brain Sexual Differentiation

  • Lee, Chae-Kwan;Kang, Han-Seung;June, Bu-ll;Lee, Byung-Ju;Moon, Deog-Hwan;Kang, Sung-Goo
    • Animal cells and systems
    • /
    • v.5 no.4
    • /
    • pp.327-331
    • /
    • 2001
  • There is a critical developmental period during which brain sexual differentiation proceeds irreversibly under the influence of gonadal hormone. Recently, kinesin superfamily-associated protein 3 (KAP3) gene expressed during the 'critical period' of rat brain differentiation was identified by us (Choi and Lee, 1999). KAP3 functions as a microtubule-based motor that transports membranous organelles anterogradely in cells, including neurons (Yamazaki et al., 1996). mRNA level of KAP3 gene markedly increased before the initiation of puberty. Neonatal treatment of estrogen clearly inhibited the prepubertal increase in KAP3 mRNA level (Choi and Lee, 1999). In the present study, we aimed to investigate the effects of polychlorinated biphenyls (PCBs), as endocrine disruptors (EDs) on the expression of KAP3 gene during the 'critical period' of rat brain development. In our data, PCBs significantly decreased the expression of KAP3 gene in the fetal (day 17) and the neonatal (day 6 after birth in) male and female rat brains. The body weight and the breeding ability were significantly decreased in the PCBs-exposed rats compared with the control. These results showed that PCBs affect the transcriptional level of brain sexual differentiation related gene, KAP3, in the fetal and the neonatal rat brains. The maternal exposure to the PCBs may lead to toxic response in embryonic brain sexual differentiation and breeding ability after sexual maturation. This study indicates that KAP3 gene may be useful as a gene marker to analyze the molecular mechanism of toxic response in the animal brain development and sexual maturation exposed to PCBs.

  • PDF

Study on the Regulation of KAP3 Gene Involved in the Brain Sexual Differentiation by DDT during the Critical Period of Fetal and Neonatal Age (출생 전.후 뇌의 성분화 결정시기에 DDT에 의한 KAP3 유전자 조절에 대한 연구)

  • 강한승;전부일;최은정;이병주;이채관;강성구
    • Development and Reproduction
    • /
    • v.4 no.1
    • /
    • pp.95-100
    • /
    • 2000
  • A large number of man-made chemicals that have been released into the environment have the potential to disrupt the endocrine system of animals and humans. There is a critical developmental period during which sexual brain differentiation proceeds irreversibly under the influence of gonadal hormone. Recently we identified KAP3 gene expressed during the critical period of rat brain sexual differentiation. KAP3 functions as a microtubule-based motor that transports membranous organelles anterogradely in cells, including neurons. In the present study, we aimed to investigate the effect of endocrine disrupter, Dichlorodiphenyl trichloroethane (DDT), on the KAP3 gene expression during critical period of rat brain development. Maternal exposure to DDT increased the level of KAP3 mRNA in male and female fetus brains when examined on the gestational day 17 (GDl7). In postnatal day 6, DDT suppressed the expression of KAP3 gene in male and female rat brain. Also, the body weight and fertilization rate were decreased in the DDT exposured rats. These results showed that endocrine disrupter, DDT, can affect the transcriptional level of brain sexual differentiation related gene, KAP3, in the prenatal and the neonatal rat brain and that maternal exposure to endocrine disruptors may lead to a toxic response in embryonic differentiation of brain. And so KAP3 gene may be used a gene maker to analyse the molecular mechanism for toxic response in animal nerve tissues exposed to endocrine disruptors.

  • PDF

Effects of Phthalate/Adipate Esters Exposure during Perinatal Period on Reproductive Function after Maturation in Rats (성숙한 랫트의 번식 기능에 있어 프탈레이트/아디페이트 에스테르의 주산기 노출의 영향)

  • ;;;;;;Yamanouchi, K.;Nishihara, M.
    • Journal of Animal Science and Technology
    • /
    • v.48 no.5
    • /
    • pp.651-662
    • /
    • 2006
  • Phthalate esters that are used as plasticizers and also found at low levels in foods such as dairy products are often mentioned as suspected endocrine disrupters. The purpose of the present study is to elucidate whether perinatal exposure to di-n-butyl phthalate(DBP), diisononyl phthalate (DINP) and di-2-ethylhexyl adipate (DEHA) affects several aspects of reproductive function in rats especially sexual differentiation of the brain. To this end, the dams were provided with pulverized soy-free diet containing 20, 200, 2,000 and 10,000 ppm of DBP, 40, 400, 4,000 and 20,000 ppm of DINP, or 480, 2,400 and 12,000 ppm of DEHA from gestational day (GD) 15 to postnatal day (PDN) 21, the day of weaning, and serum sex steroid hormone, gonadotropin levels and sexual behaviors after maturation were assessed. At Postnatal week (PNW) 20-21, serum levels of sex steroids and gonadotropins in both male and female rats, as well as estrous cyclicity in females, were not changed by perinatal exposure to DBP, DINP and DEHA, indicating that these chemicals did not affect sexual differentiation of the brain controlling the endocrine system of hypothalamo-pituitary-gonadal (HPG) axis. On the other hand, inhibitory influences on sexual behaviors, especially on ejaculation in males and lordosis in females, were observed by perinatal exposure to these chemicals. These results suggest that these chemicals may act directly on discrete regions of the hypothalamus regulating sexual behaviors, but not regulating gonadotropin secretion, thereby affect sexual differentiation of the brain with a resultant decrease in sex-specific behaviors in adulthood.

Study of Growth Disturbance and Endocrine, in the view of Oriental Medicine (소아 성장장애와 내분비에 대한 한의학적 고찰)

  • Jun Chan-Il
    • The Journal of Pediatrics of Korean Medicine
    • /
    • v.15 no.1
    • /
    • pp.105-115
    • /
    • 2001
  • The relation of endocrine in the western medicine and zangfu-organ functions in Korean medicine, related to growth disturbance, was studied and derived the following results. 1. The hormone most related to growth disturbance is, directly secreted from the anterior pituitary or is stimulated and secreted in the target grands, growth hormone, thyroid, adrenocortical hormone, gonadial hormone and is insulin secreted from $\beta$ cell of langerhans' slands of pancreas. 2. the pituitary has the most close relation with the kidney in the five zang-organ. Because the kidney is innate origin(先天之本) and promotes qi and blood(生化氣血), stores the essence of life(藏精), dominates the bones(主骨) and promotes the marrow(生骨髓). Especially it is connected with brain(通於腦). 3. In the children growth, the endocrine action in the pituitary has the most close relation with the kidney, As in the reports of the brain and spinal cord, bone, store essence of life, sexual maturation and decline(kidney-qi, sexual functions of both sexes(天癸)) etc, and cause of cretinism, dwarf in the main subject. 4. Somatomedin is the most important factor of the growth factors, IGF in another word. The unification of IGF and secretion is controlled firstly according to growth hormone, however is very closely related to the nutrition status in the non-hormonic causes. Also, it is affected very much by the insulin. 5. Insulin is one of the important hormone related to the growth and is secreted from the pancreas. Pancreas belongs to the functional system of spleen in oriental medicine, thus the growth disturbance, occurred due to error in insulin secretion and nutrition(in another words, the lack of postnatal essential substance from food-stuff(水穀精氣)), is closely related to the spleen. 6. From the results driven above, the hormone action of endocrine and problem in secretion, related to the growth disturbance, must be focused on the differentiation of symptoms and signs of the kidney and the spleen in oriental medicine.

  • PDF

Kisspeptins (KiSS-1): Essential Players in Suppressing Tumor Metastasis

  • Prabhu, Venugopal Vinod;Sakthivel, Kunnathur Murugesan;Guruvayoorappan, Chandrasekharan
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.14 no.11
    • /
    • pp.6215-6220
    • /
    • 2013
  • Kisspeptins (KPs) encoded by the KiSS-1 gene are C-terminally amidated peptide products, including KP-10, KP-13, KP-14 and KP-54, which are endogenous agonists for the G-protein coupled receptor-54 (GPR54). Functional analyses have demonstrated fundamental roles of KiSS-1 in whole body homeostasis including sexual differentiation of brain, action on sex steroids and metabolic regulation of fertility essential for human puberty and maintenance of adult reproduction. In addition, intensive recent investigations have provided substantial evidence suggesting roles of Kisspeptin signalling via its receptor GPR54 in the suppression of metastasis with a variety of cancers. The present review highlights the latest studies regarding the role of Kisspeptins and the KiSS-1 gene in tumor progression and also suggests targeting the KiSS-1/GPR54 system may represent a novel therapeutic approach for cancers. Further investigations are essential to elucidate the complex pathways regulated by the Kisspeptins and how these pathways might be involved in the suppression of metastasis across a range of cancers.

Effects of Perinatal Exposure to Phthalate/Adipate Esters on Sex Steroid Levels and Hypothalamic Gene Expression during Early Postnatal Periods in Rats

  • Lee, Hwi-Cheul;Im, Gi-Sun;Chung, Hak-Jae;Lee, Poong-Yeon;Park, Jin-Ki;Chang, Won-Kyong;Yang, Boh-Suk;Yamanouchi, Keitaro;Nishihara, Masugi
    • Reproductive and Developmental Biology
    • /
    • v.30 no.4
    • /
    • pp.247-253
    • /
    • 2006
  • Our previous research has identified granulin (grn) and p130 genes as sex steroid-inducible genes in the rat hypothalamus, which might be involved in sexual differentiation of the brain. Phthalate esters that are used as plasticizers and also found at low levels in foods such as dairy products are often mentioned as suspected endocrine disrupters. The purpose of the present study is to elucidate whether perinatal exposure to di-n-butyl phthalate (DBP), diisononyl phthalate (DINP) and di-2-ethylhexyl adipate (DEHA) affects hypothalamic sex steroid-inducible genes. The present study assessed the effects of perinatal exposure to DBP, DINP and DEHA on sex steroid hormones levels and hypothalamic gm and p130 mRNA expressions at postnatal day (PND) 3 and 7. Pregnant rats were fed a soy-free diet containing 20, 200, 2,000 and 10,000 ppm of DBP, 40, 400, 4,000 and 20,000 ppm of DINP, or 480, 2,400 and 12,000 ppm of DEHA from gestational day (GD) 15 to GD 3 or 7. At PND 3 and 7, perinatal exposure to these chemicals did not substantially affect serum concentrations of testosterone and estradiol. At PND 3, the expression of grn mRNA levels in males was decreased by DEHA, and that of p130 was decreased by DBP, DINP and DEHA, though the effects were not dose-dependent. At PND 7, the expression of gm gene in female pups was increased by higher doses of DBP and all the doses, except for 4,000 ppm, of DINP, while that in male pups decreased by 480 and 12,000 ppm of DEHA. Hypothalamic expression of p130 mRNA in males was increased by lower doses of DBP and all the doses of DINP, whereas that of females was decreased by 480 and 2,400 ppm of DEHA. These results suggest that these chemicals may affect the expression of gm and p130 genes by directly acting on the hypothalamus, thus leading to inappropriate expression of these genes.