• Title/Summary/Keyword: Brain plasticity

Search Result 155, Processing Time 0.03 seconds

The use of neural networks for the prediction of swell pressure

  • Erzin, Yusuf
    • Geomechanics and Engineering
    • /
    • v.1 no.1
    • /
    • pp.75-84
    • /
    • 2009
  • Artificial neural networks (ANNs) are a new type of information processing system based on modeling the neural system of human brain. The prediction of swell pressures from easily determined soil properties, namely, initial dry density, initial water content, and plasticity index, have been investigated by using artificial neural networks. The results of the constant volume swell tests in oedometers, performed on statically compacted specimens of Bentonite-Kaolinite clay mixtures with varying soil properties, were trained in an ANNs program and the results were compared with the experimental values. It is observed that the experimental results coincided with ANNs results.

Neurophysiological Evaluation of the Motor System Using Transcranial Magnetic Stimulation (뇌자기자극을 이용한 운동신경계의 신경생리학적 평가)

  • Shin, Hae-Won;Sohn, Young-H.
    • Annals of Clinical Neurophysiology
    • /
    • v.13 no.1
    • /
    • pp.1-12
    • /
    • 2011
  • Transcranial magnetic stimulation (TMS) is a non-invasive tool used to study aspects of human brain physiology, including motor function and the pathophysiology of various brain disorders. A brief electric current passed through a magnetic coil produces a high-intensity magnetic field, which can excite or inhibit the cerebral cortex. Although various brain regions can be evaluated by TMS, most studies have focused on the motor cortex where motor evoked potentials (MEPs) are produced. Single-pulse and paired-pulse TMS can be used to measure the excitability of the motor cortex via various parameters, while repetitive TMS induces cortical plasticity via long-term potentiation or long-term depression-like mechanisms. Therefore, TMS is useful in the evaluation of physiological mechanisms of various neurological diseases, including movement disorders and epilepsy. In addition, it has diagnostic utility in spinal cord diseases, amyotrophic lateral sclerosis and demyelinating diseases. The therapeutic effects of repetitive TMS on stroke, Parkinson disease and focal hand dystonia are limited since the duration and clinical benefits seem to be temporary. New TMS techniques, which may improve clinical utility, are being developed to enhance clinical utilities in various neurological diseases.

Ezrin-radixin-moesin proteins are regulated by Akt-GSK3β signaling in the rat nucleus accumbens core

  • Kim, Wha Young;Cai, Wen Ting;Jang, Ju Kyong;Kim, Jeong-Hoon
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.24 no.1
    • /
    • pp.121-126
    • /
    • 2020
  • The ezrin-radixin-moesin (ERM) proteins are a family of membrane-associated proteins known to play roles in cell-shape determination as well as in signaling pathways. We have previously shown that amphetamine decreases phosphorylation levels of these proteins in the nucleus accumbens (NAcc), an important neuronal substrate mediating rewarding effects of drugs of abuse. In the present study, we further examined what molecular pathways may be involved in this process. By direct microinjection of LY294002, a PI3 kinase inhibitor, or of S9 peptide, a proposed GSK3β activator, into the NAcc core, we found that phosphorylation levels of ERM as well as of GSK3β in this site are simultaneously decreased. These results indicate that ERM proteins are under the regulation of Akt-GSK3β signaling pathway in the NAcc core. The present findings have a significant implication to a novel signal pathway possibly leading to structural plasticity in relation with drug addiction.

Acid-sensing ion channels (ASICs): therapeutic targets for neurological diseases and their regulation

  • Kweon, Hae-Jin;Suh, Byung-Chang
    • BMB Reports
    • /
    • v.46 no.6
    • /
    • pp.295-304
    • /
    • 2013
  • Extracellular acidification occurs not only in pathological conditions such as inflammation and brain ischemia, but also in normal physiological conditions such as synaptic transmission. Acid-sensing ion channels (ASICs) can detect a broad range of physiological pH changes during pathological and synaptic cellular activities. ASICs are voltage-independent, proton-gated cation channels widely expressed throughout the central and peripheral nervous system. Activation of ASICs is involved in pain perception, synaptic plasticity, learning and memory, fear, ischemic neuronal injury, seizure termination, neuronal degeneration, and mechanosensation. Therefore, ASICs emerge as potential therapeutic targets for manipulating pain and neurological diseases. The activity of these channels can be regulated by many factors such as lactate, $Zn^{2+}$, and Phe-Met-Arg-Phe amide (FMRFamide)-like neuropeptides by interacting with the channel's large extracellular loop. ASICs are also modulated by G protein-coupled receptors such as CB1 cannabinoid receptors and 5-$HT_2$. This review focuses on the physiological roles of ASICs and the molecular mechanisms by which these channels are regulated.

MICAL-like Regulates Fasciclin II Membrane Cycling and Synaptic Development

  • Nahm, Minyeop;Park, Sunyoung;Lee, Jihye;Lee, Seungbok
    • Molecules and Cells
    • /
    • v.39 no.10
    • /
    • pp.762-767
    • /
    • 2016
  • Fasciclin II (FasII), the Drosophila ortholog of neural cell adhesion molecule (NCAM), plays a critical role in synaptic stabilization and plasticity. Although this molecule undergoes constitutive cycling at the synaptic membrane, how its membrane trafficking is regulated to ensure proper synaptic development remains poorly understood. In a genetic screen, we recovered a mutation in Drosophila mical-like that displays an increase in bouton numbers and a decrease in FasII levels at the neuromuscular junction (NMJ). Similar phenotypes were induced by presynaptic, but not postsynaptic, knockdown of mical-like expression. FasII trafficking assays revealed that the recycling of internalized FasII molecules to the cell surface was significantly impaired in mical-like-knockdown cells. Importantly, this defect correlated with an enhancement of endosomal sorting of FasII to the lysosomal degradation pathway. Similarly, synaptic vesicle exocytosis was also impaired in mical-like mutants. Together, our results identify Mical-like as a novel regulator of synaptic growth and FasII endocytic recycling.

Matrix Metalloproteinases, New Insights into the Understanding of Neurodegenerative Disorders

  • Kim, Yoon-Seong;Joh, Tong-H.
    • Biomolecules & Therapeutics
    • /
    • v.20 no.2
    • /
    • pp.133-143
    • /
    • 2012
  • Matrix metalloproteinases (MMPs) are a subfamily of zinc-dependent proteases that are re-sponsible for degradation and remodeling of extracellular matrix proteins. The activity of MMPs is tightly regulated at several levels including cleavage of prodomain, allosteric activation, com-partmentalization and complex formation with tissue inhibitor of metalloproteinases (TIMPs). In the central nervous system (CNS), MMPs play a wide variety of roles ranging from brain devel-opment, synaptic plasticity and repair after injury to the pathogenesis of various brain disorders. Following general discussion on the domain structure and the regulation of activity of MMPs, we emphasize their implication in various brain disorder conditions such as Alzheimer's disease, multiple sclerosis, ischemia/reperfusion and Parkinson's disease. We further highlight accumu-lating evidence that MMPs might be the culprit in Parkinson's disease (PD). Among them, MMP-3 appears to be involved in a range of pathogenesis processes in PD including neuroinflamma-tion, apoptosis and degradation of ${\alpha}$-synuclein and DJ-1. MMP inhibitors could represent poten-tial novel therapeutic strategies for treatments of neurodegenerative diseases.

Brain Neuroadaptative Changes in Adolescents with Internet Addiction : An FDG-PET Study with Statistical Parametric Mapping Analysis

  • Koo, Young-Jin;Paeng, Jin-Chul;Joo, Eun-Jeong;Kang, Hye-Jin;Im, Youn-Seok;Seok, Ju-Won;Kang, Ung-Gu
    • Journal of the Korean Academy of Child and Adolescent Psychiatry
    • /
    • v.19 no.1
    • /
    • pp.13-18
    • /
    • 2008
  • Objectives : Internet addiction or pathologic internet use is one of the major mental health problems in children and adolescents in Korea. Internet addiction is defined as uncontrollable, markedly time-consuming internet use, which lasts for a period of at least six months. Internet addiction results in poor academic performance and negative parent-child relationships. By using $^{18}F$-fluorodeoxyglucose-positron emission tomography (FDG-PET), we investigated the effects of internet addiction on functional changes occurring in the adolescent brain. Methods : Adolescent patients with an internet addiction (4 boys and 2 girls; $15.6{\pm}1.2$ years) participated in this study. Eight healthy young adults (5 males and 3 females; 18-30 years old) with no previous history of psychiatric illness also participated as normal controls. Brain FDG-PET data was obtained with the participants in the resting condition and with no addictive stimuli. Results : Statistic parametric mapping analysis of the brain FDG-PET data revealed hypometabolic changes in the visual information processing circuits and hypermetabolic changes in the prefrontal areas in the adolescents with internet addiction, as compared with normal controls (p<.001). Conclusion : These results suggest a neuronal adaptation to excessive visual stimulation and synaptic plasticity due to internet addiction.

  • PDF

A Review of the Neurocognitive Mechanisms for Mathematical Thinking Ability (수학적 사고력에 관한 인지신경학적 연구 개관)

  • Kim, Yon Mi
    • Korean Journal of Cognitive Science
    • /
    • v.27 no.2
    • /
    • pp.159-219
    • /
    • 2016
  • Mathematical ability is important for academic achievement and technological renovations in the STEM disciplines. This study concentrated on the relationship between neural basis of mathematical cognition and its mechanisms. These cognitive functions include domain specific abilities such as numerical skills and visuospatial abilities, as well as domain general abilities which include language, long term memory, and working memory capacity. Individuals can perform higher cognitive functions such as abstract thinking and reasoning based on these basic cognitive functions. The next topic covered in this study is about individual differences in mathematical abilities. Neural efficiency theory was incorporated in this study to view mathematical talent. According to the theory, a person with mathematical talent uses his or her brain more efficiently than the effortful endeavour of the average human being. Mathematically gifted students show different brain activities when compared to average students. Interhemispheric and intrahemispheric connectivities are enhanced in those students, particularly in the right brain along fronto-parietal longitudinal fasciculus. The third topic deals with growth and development in mathematical capacity. As individuals mature, practice mathematical skills, and gain knowledge, such changes are reflected in cortical activation, which include changes in the activation level, redistribution, and reorganization in the supporting cortex. Among these, reorganization can be related to neural plasticity. Neural plasticity was observed in professional mathematicians and children with mathematical learning disabilities. Last topic is about mathematical creativity viewed from Neural Darwinism. When the brain is faced with a novel problem, it needs to collect all of the necessary concepts(knowledge) from long term memory, make multitudes of connections, and test which ones have the highest probability in helping solve the unusual problem. Having followed the above brain modifying steps, once the brain finally finds the correct response to the novel problem, the final response comes as a form of inspiration. For a novice, the first step of acquisition of knowledge structure is the most important. However, as expertise increases, the latter two stages of making connections and selection become more important.

Increased white matter diffusivity associated with phantom limb pain

  • Seo, Cheong Hoon;Park, Chang-hyun;Jung, Myung Hun;Baek, Seungki;Song, Jimin;Cha, Eunsil;Ohn, Suk Hoon
    • The Korean Journal of Pain
    • /
    • v.32 no.4
    • /
    • pp.271-279
    • /
    • 2019
  • Background: We utilized diffusion tensor imaging (DTI) to evaluate the cerebral white matter changes that are associated with phantom limb pain in patients with unilateral arm amputation. It was anticipated that this would complement previous research in which we had shown that changes in cerebral blood volume were associated with the cerebral pain network. Methods: Ten patients with phantom limb pain due to unilateral arm amputation and sixteen healthy age-matched controls were enrolled. The intensity of phantom limb pain was measured by the visual analogue scale (VAS) and depressive mood was assessed by the Hamilton depression rating scale. Diffusion tensor-derived parameters, including fractional anisotropy, mean diffusivity, axial diffusivity (AD), and radial diffusivity (RD), were computed from the DTI. Results: Compared with controls, the cases had alterations in the cerebral white matter as a consequence of phantom limb pain, manifesting a higher AD of white matter in both hemispheres symmetrically after adjusting for individual depressive moods. In addition, there were associations between the RD of white matter and VAS scores primarily in the hemispheres related to the missing hand and in the corpus callosum. Conclusions: The phantom limb pain after unilateral arm amputation induced plasticity in the white matter. We conclude that loss of white matter integrity, particularly in the hemisphere connected with the missing hand, is significantly correlated with phantom limb pain.

Learning-Related Changes on the Brain Activation Patterns in Classification of Knowledge-Generation and -Understanding (분류 지식의 생성과 이해 형태 학습을 통한 학생들의 두뇌활성 변화)

  • Kwon, Yong-Ju;Lee, Jun-Ki
    • Journal of The Korean Association For Science Education
    • /
    • v.30 no.4
    • /
    • pp.487-497
    • /
    • 2010
  • The purpose of this study was to investigate how a teaching approach influences student's ability of classification at the brain level. Twenty four healthy and right-handed college students participated in this study, which investigated a brain plasticity associated with category-generation and -understanding in classification learning. The participants were divided into one of two groups, one each for category-generation and -understanding learning programs, which were composed of twelve topics taught over a twelve-week period. To measure the change in student competence and brain activations, a paper and pencil test and an fMRI scanning session were administered before and after the training programs. Unlike the understanding group, the generation group showed significant changes in classification ability quotients and learning-related brain activations (cerebral cortex and basal ganglia were increased and prefrontal cortex and parahippocampal gyrus were decreased). Nevertheless, the understanding group showed an increased activation in the cerebral cortex and parahippocampal gyrus and a decreased activation in the right prefrontal cortex and cerebellum. Therefore, it can be concluded that teaching styles could influence students' brain activation patterns and classification ability. The results might also be used to develop a brain-compatible science education curriculum.