• 제목/요약/키워드: Brain model

검색결과 1,191건 처리시간 0.029초

뇌 정보처리 원리 기반 지능형 정보처리 레이어 설계 (Design of Intelligent Information Processing Layer based on Brain)

  • 김성주
    • 한국지능시스템학회:학술대회논문집
    • /
    • 한국퍼지및지능시스템학회 2006년도 춘계학술대회 학술발표 논문집 제16권 제1호
    • /
    • pp.45-48
    • /
    • 2006
  • The system that can generate biological brain information processing mechanism more precisely may have several abilities such as exact cognition, situation decision, learning and inference, and output decision. In this paper, to implement high level information processing and thinking ability in a complex system, the information processing layer based on the biological brain is introduced. The biological brain information processing mechanism, which is analyzed in this paper, provides fundamental information about intelligent engineering system, and the design of the layer that can mimic the functions of a brain through engineering definitions can efficiently introduce an intelligent information processing method having a consistent flow in various engineering systems. The applications proposed in this paper are expected to take several roles as a unified model that generates information process in various areas, such as engineering and medical field, with a dream of implementing humanoid artificial intelligent system.

  • PDF

A Variational Model For Longitudinal Brain Tissue Segmentation

  • Tang, Mingjun;Chen, Renwen;You, Zijuan
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제16권11호
    • /
    • pp.3479-3492
    • /
    • 2022
  • Longitudinal quantification of brain changes due to development, aging or disease plays an important role in the filed of personalized-medicine applications. However, due to the temporal variability in shape and different imaging equipment and parameters, estimating anatomical changes in longitudinal studies is significantly challenging. In this paper, a longitudinal Magnetic Resonance(MR) brain image segmentation algorithm proposed by combining intensity information and anisotropic smoothness term which contain a spatial smoothness constraint and longitudinal consistent constraint into a variational framework. The minimization of the proposed energy functional is strictly and effectively derived from a fast optimization algorithm. A large number of experimental results show that the proposed method can guarantee segmentation accuracy and longitudinal consistency in both simulated and real longitudinal MR brain images for analysis of anatomical changes over time.

Cognitive Dysfunction and Hippocampal Damage Induced by Hypoxic-Ischemic Brain Injury and Prolonged Febrile Convulsions in Immature Rats

  • Byeon, Jung Hye;Kim, Gun-Ha;Kim, Joo Yeon;Sun, Woong;Kim, Hyun;Eun, Baik-Lin
    • Journal of Korean Neurosurgical Society
    • /
    • 제58권1호
    • /
    • pp.22-29
    • /
    • 2015
  • Objective : Perinatal hypoxic-ischemic encephalopathy (HIE) and prolonged febrile seizures (pFS) are common neurologic problems that occur during childhood. However, there is insufficient evidence from experimental studies to conclude that pFS directly induces hippocampal injury. We studied cognitive function and histological changes in a rat model and investigated which among pFS, HIE, or a dual pathologic effect is most detrimental to the health of children. Methods : A rat model of HIE at postnatal day (PD) 7 and a pFS model at PD10 were used. Behavioral and cognitive functions were investigated by means of weekly open field tests from postnatal week (PW) 3 to PW7, and by daily testing with the Morris water maze test at PW8. Pathological changes in the hippocampus were observed in the control, pFS, HIE, and HIE+pFS groups at PW9. Results : The HIE priming group showed a seizure-prone state. The Morris water maze test revealed a decline in cognitive function in the HIE and HIE+pFS groups compared with the pFS and control groups. Additionally, the HIE and HIE+pFS groups showed significant hippocampal neuronal damage, astrogliosis, and volume loss, after maturation. The pFS alone induced minimal hippocampal neuronal damage without astrogliosis or volume loss. Conclusion : Our findings suggest that pFS alone causes no considerable memory or behavioral impairment, or cellular change. In contrast, HIE results in lasting memory impairment and neuronal damage, gliosis, and tissue loss. These findings may contribute to the understanding of the developing brain concerning conditions caused by HIE or pFS.

마이다스아이티의 뇌과학 기반 인적자원 관리 사례 연구 (Neuroscience based human resource management at Midas IT Co._A case study)

  • 이지훈
    • 한국산학기술학회논문지
    • /
    • 제21권5호
    • /
    • pp.240-248
    • /
    • 2020
  • 지난 20여 년 간 뇌 과학은 기능성 자기공명영상(fMRI) 등 새로운 기술에 힘입어 크게 발전했으며, 우리는 인간의 본성과 행동 변화에 대해 더욱 정확한 지식을 얻게 됐다. 이 같은 지식은 경영 분야에도 활발하게 응용되고 있다. 이 연구는 마이다스아이티의 사례를 통해 뇌과학을 경영에 어떻게 접목할 수 있는지 통찰을 얻는 것이 목적이다. 건설 소프트웨어 회사인 이 회사는 별도 조직을 두어 뇌 과학을 연구하고 있으며, 뇌 과학에 기반한 인사 정책을 만들어 시행하고 있다. 창업자 이형우 사장은 인본주의 경영 철학을 갖고 있으며, 뇌 과학 연구는 그 철학을 뒷받침한다. 연구 방법으로 사례연구 방법을 채택하였으며, 인터뷰와 직접 관찰, 참여 관찰, 문서 정보 등의 절차를 수행했다. 이 회사의 인적자원 관리 시스템은 뇌과학 연구가 응집된 'SCARF'라는 뇌과학 모델로 설명이 가능하다. 이 회사는 이 모델이 제시하는 것처럼 일터에서 지위감(Status), 확실성(Certainty), 자율감(Autonomy), 관계성(Relatedness), 공정성(Fariness) 위협을 줄임으로써 구성원의 신뢰와 만족도를 제고했고, 이는 창의적이고 고성과 조직이 되는 발판이 되었다.

P300 뇌파를 이용한 뇌-기계 인터페이스 기술에 대한 연구 (Brain-Machine Interface Using P300 Brain Wave)

  • 차갑문;신현출
    • 전자공학회논문지SC
    • /
    • 제47권5호
    • /
    • pp.18-23
    • /
    • 2010
  • 본 논문은 유발전위(evoked potential) 뇌파인 P300에 기반한 뇌-기계 인터페이스의 실시간 구현을 위한 효율적인 알고리즘을 제안한다. P300 뇌파는 외부 시각 자극이 인간의 의지와 일치할 경우, 100-300ms 부근에서 negative pick를 갖는 특성이 있다. 이러한 특성에 기초하여 P300 뇌파의 포텐셜(potential) 감소를 감지하여 인간의 의도를 역으로 추론할 수 있으며, 이를 뇌-기계 인터페이스에 활용할 수 있다. 연구에서 P300 뇌파는 인간의 두개골 외부에 부착된 전극을 통해 얻어졌으며, 시각적 자극으로는 2차원 알파벳 신호를 사용하였다. P300 뇌파의 포텐셜 감소 검출을 위하여 뇌파 포텐셜을 자극과 연계하여 확률적으로 모델링하였다. 확률적 모델은 피실험자가 의도하는 신호의 모델(target model)과 의도하지 않는 신호의 모델(non-target model)로 구성된다. 이러한 확률적 모델에 기반하여 피실험자의 의도를 추론하기 위해서 최우추정법(maximum likelihood estimation)을 사용하였다. 실험에는 신체 건강한 성인 남자 3명이 참가하였으며, 'A'와 'E' 실험에 대한 피실험자 k의 평균 성공률은 98%, 피실험자 j의 평균 성공률 90%, 그리고 피실험자 h의 성공률은 79.8%였다.

Growth of Endothelial Cells on Microfabricated Silicon Nitride Membranes for an In Vitro Model of the Blood-brain Barrier

  • Harris, Sarina G.;Shuler, Michael L.
    • Biotechnology and Bioprocess Engineering:BBE
    • /
    • 제8권4호
    • /
    • pp.246-251
    • /
    • 2003
  • The blood-brain barrier (BBB) is composed of the brain capillaries, which are lined by endothelial cells displaying extremely tight intercellular junctions. Several attempts at creating an in vitro model of the BBB have been met with moderate success as brain capillary endothelial cells lose their barrier properties when isolated in cell culture. This may be due to a lack of recreation of the in vivo endothelial cellular environment in these models, including nearly constant contact with astrocyte foot processes. This work is motivated by the hypothesis that growing endothelial cells on one side of an ultra-thin, highly porous membrane and differentiating astrocyte or astrogliomal cells on the opposite side will lead to a higher degree of interaction between the two cell types and therefore to an improved model. Here we describe our initial efforts towards testing this hypothesis including a procedure for membrane fabrication and methods for culturing endothelial cells on these membranes. We have fabricated a 1 $\mu\textrm{m}$ thick, 2.0 $\mu\textrm{m}$ pore size, and 55% porous membrane with a very narrow pore size distribution from low-stress silicon nitride (SiN) utilizing techniques from the microelectronics industry. We have developed a base, acid, autoclave routine that prepares the membranes for cell culture both by cleaning residual fabrication chemicals from the surface and by increasing the hydrophilicity of the membranes (confirmed by contact angle measurements). Gelatin, fibronectin, and a 50/50 mixture of the two proteins were evaluated as potential basement membrane protein treatments prior to membrane cell seeding. All three treatments support adequate attachment and growth on the membranes compared to the control.

Implementation of 2D Snake Model-based Segmentation on Corpus Callosum

  • Shidaifat, Ala'a ddin Al;Choi, Heung-Kook
    • 한국멀티미디어학회논문지
    • /
    • 제17권12호
    • /
    • pp.1412-1417
    • /
    • 2014
  • The corpus callosum is the largest part of the brain, which is related to many neurological diseases. Snake model or active contour model is widely used in medical image processing field, especially image segmentation they look into the nearby edge, localizing them accurately. In this paper, corpus callosum segmentation using the snake model, is proposed. We tested a snake model on brain MRI. Then we compared the result with an active shape approach and found that snake model had better segmentation accuracy also faster than active shape approach.

광화학적 허혈성 뇌졸중 모델에서 사심탕(瀉心湯)의 뇌세포 손상 보호효과 (The Protective Effects of Sasim-tang on the Brain Cell Damage in Photothrombotic Ischemia Mouse Model)

  • 강백규;윤종민;문병순
    • 대한한방내과학회지
    • /
    • 제33권4호
    • /
    • pp.572-586
    • /
    • 2012
  • Objectives : This study was designed to investigate the effects of Sasim-tang (SST) on proinflammatory cytokine production in a photothrombotic ischemia mouse model. Methods : Photothrombotic ischemia was induced in stereotactically held male Balb/c mice using rose bengal (10 mg/kg) and cold light. The target of photothrombotic ischemic lesion was 1 mm anterior to bregma and 3 mm lateral to midline with 2 mm in diameter, which are decreased by oral administration of SST. Results : SST protected ischemic death of brain cells through inhibition of pro-inflammatory cytokines production and catalytic activation of caspase-3 protease in photothrombotic ischemia mouse model. Conclusions : The results of this study suggest that SST can have protective effects on brain cell damage in a photothrombotic ischemia mouse model.

영역확장법과 동적외곽선모델을 이용한 해마(hippocampus)의 외곽선 검출 (Contour detection of hippocampus using Dynamic Contour Model and Region Growing)

  • 장동표;김효대;이두수;김선일
    • 대한의용생체공학회:학술대회논문집
    • /
    • 대한의용생체공학회 1997년도 춘계학술대회
    • /
    • pp.116-118
    • /
    • 1997
  • In hippocampal morphology Abnormalities, including unilateral or bilateral volume loss, are known to occur in epilepsy, Alzheimer's disease, and in certain amnestic syndromes. To detect such abnormalities in hippocampal morphology, we present a method that combines region growing and dynamic contour model to detect hippocampus from MRI brain data. The segmentation process is performed two steps. First region growing with a seed point is performed in the region of hippocampus and the initial contour of dynamic contour model is obtained. Second, the initial contour is modified on the basis of criteria that integrate energy with contour smoothness and the image gradient along the contour. As a result, this method improves fairly sensitivity to the choice of the initial seed point, which is often seen by conventional contour model. The power and practicality of this method have been tested on two brain datasets. Thus, we have developed an effective algorithm to extract hippocampus from MRI brain data.

  • PDF

초등 과학 교육에서 두뇌 연구 방법의 고찰 - fMRI 활용법을 중심으로 - (A Review on Brain Study Methods in Elementary Science Education - A Focus on the fMRl Method -)

  • 신동훈;권용주
    • 한국초등과학교육학회지:초등과학교육
    • /
    • 제26권1호
    • /
    • pp.49-62
    • /
    • 2007
  • The higher cognitive functions of the human brain including teaming are hypothesized to be selectively distributed across large-scale neural networks interconnected to the cortical and subcortical areas. Recently, advances in functional imaging have made it possible to visualize the brain areas activated by certain cognitive activities in vivo. Neural substrates for teaming and motivation have also begun to be revealed. Functional magnetic resonance imaging (fMRI) provides a non-invasive indirect mapping of cerebral activity, based on the blood- oxygen level dependent (BOLD) contrast which is based on the localized hemodynamic changes following neural activities in certain areas of the brain. The fMRI method is now becoming an essential tool used to define the neuro-functional mechanisms of higher brain functions such as memory, language, attention, learning, plasticity and emotion. Further research in the field of education will accelerate the verification of the effects on loaming or help in the selection of model teaching strategies. Thus, the purpose of this study was to review brain study methods using fMRI in science education. In conclusion, a number of possible strategies using fMRI for the study of elementary science education were suggested.

  • PDF