• Title/Summary/Keyword: Brain metabolism

Search Result 294, Processing Time 0.022 seconds

Metabolism of $C^{14}$-acetate in the Ehrlich ascites tumor (에르릿히 복수암에 있어서 $C^{14}$-초산염 대사)

  • Chun, Won-Kun;Rhee, Sang-Don
    • The Korean Journal of Physiology
    • /
    • v.4 no.2
    • /
    • pp.25-31
    • /
    • 1970
  • Tissue homogenates of Ehrlich ascites tumor tissues and several normal tissue of mice were incubated separately in medium maintaining $C^{14}$_acetate concentrations of 5, 10, 20, 30, 40, 50 and 60 mg%, in order to determine maximum oxidative rates of acetate. In every incubation experiments, respiratory $CO_2$ samples rapped by alkaline which was placed in the center well of the incubation blask were analyzed for total $CO_2$ Production rates and their radoactivies. The fractions of $CO_2$ from medium acetate to total $CO_2$ production rate were obtained with relative specific activities (RSA) which were calculated by ratio between specific activities (SA) of $CO_2$ and medium $CO^{14}$_acetate and $CO_2$ production rates from medium acetate were calculated from RSA and total $CO_2$ production rates. Maximum plateau values of oxidative rates described above were determined at incubation experiments of various concentrations of medium acetate and compared the oxidative rates of acetate of tumor with those of normal tissues such as kidney, brain and liver. Maximum plateau values of total $CO_{2}$ Production rates were obtained at acetate concentration of 20 mg% and represent $25.0{\pm}0.54\;{\mu}M/hr/gm$ in the brain, $16.3{\pm}2.5$ in the kidney, $9.1{\pm}1.78$ in the liver and $11.5{\pm}3.2\;{\mu}M/hr/gm$ in the ascites tuners. Substancial $CO_2$ yield was observed in the tumor tissues as in the normal tissues. On the other hand, plateau values of RSA were $25.7{\pm}1.04%$ in thee brain, $9.1{\pm}0.72%$ in the kidney, $2.5{\pm}0.73%$ in the liver and $0.51{\pm}0.12%$ in the tumor tissues. $CO_2$ yields from the medium acetate, were 4.19 in the kidney, 2.28 in the brain, 0.228 in the liter and $0.059\;{\mu}M/hr/gm$ in the tumor tissue. These show wide range even in the normal tissue but remarkable decrease in the tumor tissue. This fact means that further oxidation of acetate was inhibited remarkably in the tumor tissue.

  • PDF

The Effect of Dansamtongmek-tang and Dansamsengmek-san on Hyperlipidemia and Brain & Cell Damage by Hypoxia (단삼통맥탕(丹蔘通脈湯)과 단삼생맥산(丹蔘生脈散)이 고지혈증 및 Hypoxia로 유발된 뇌손상과 세포손상에 미치는 영향)

  • Kim, Yong-Jin;Yu, Byeong-Chan;Kim, Yoon-Sik;Seol, In-Chan
    • The Journal of Korean Medicine
    • /
    • v.27 no.3 s.67
    • /
    • pp.107-131
    • /
    • 2006
  • Background and Aims: Dansamtongmek-tang (DSTMT) and Dansamsengmek-san (DSSMS) have been used for many years as therapeutic agents for the acute stage of cerebrovascular disease, hypertension and hyperlipidemia in Oriental medicine, but the effects of DSTMT and DSSMS on hyperlipidemia and safety for cell damage are not yet well-known. This study was done to investigate the effects of DSTMT and DSSMS on hyperlipidemia. Methods: In vivo test: after administering DSTMT and DSSMS to SHR and ICR occurred hyperlipidemia for 3 weeks, we analyzed body weight, cholesterol levels. TG, HDL-chol, LDL-chol, LDH in plasma, brain, liver and kidney tissue, and DNA by RT-PCR. In vitro test: after administering DSTMT and DSSMS to human hepatocellular carcinoma in hypoxia, we observed cell cohesion by light microscope, analyzed the inflow of Ca2+ by confocal laser scanning microscope and DNA by RT-PCR. Results: DSTMT significantly decreased the levels of triglyceride and increased the levels of HDL-cholesterol in SHR, and significantly decreased the levels of LDL-cholesterol and body weight and increased the levels of HDL-cholesterol in ICR. DSSMS significantly decreased body weight, total cholesterol levels, LDL-cholesterol, LDH and cardiac risk factor (CRE) in SHR and significantly decreased the levels of total cholesterol, triglyceride, LDL-cholesterol, LDH and CRF in ICR. DSTMT had an effect on protecting cells from damage by inhibiting production of p53 mRNA, and in DSSMS, by inhibiting production of p53 mRNA and p21 mRNA after hypoxia. DSTMT effectively blocked off Ca2+ at low density, but DSSMS effectively blocked off Ca2+ at high density. Both DSTMT and DSSMS had an effect on inhibiting lipid metabolism by blocking off production of apo B mRNA. Conclusions: These results suggest that DSTMT and DSSMS might be usefully applied for treatment of hyperlipidemia and suppression of brain damage.

  • PDF

The effect of low-dose intravenous bisphosphonate treatment on osteoporosis in children with quadriplegic cerebral palsy

  • Moon, Soon Jeong;An, Young Min;Kim, Soon Ki;Kwon, Young Se;Lee, Ji Eun
    • Clinical and Experimental Pediatrics
    • /
    • v.60 no.12
    • /
    • pp.403-407
    • /
    • 2017
  • Purpose: Quadriplegic children with cerebral palsy are more susceptible to osteoporosis because of various risk factors that interfere with bone metabolism. Pamidronate is effective for pediatric osteoporosis, but there are no guidelines for optimal dosage or duration of treatment in quadriplegic children with osteoporosis. We aimed to evaluate the efficacy of low-dose pamidronate treatment in these patients. Methods: Ten quadriplegic patients on antiepileptic drugs (6 male, 4 female patients; mean age, $10.9{\pm}5.76years$), with osteoporosis and gross motor function classification system level V, were treated with pamidronate (0.5-1.0 mg/kg/day, 2 consecutive days) every 3-4 months in a single institution. The patients received oral supplements of calcium and vitamin D before and during treatment. The lumbar spine bone mineral density (BMD) z score and biochemical markers of bone metabolism were measured regularly during treatment. Results: The main underlying disorder was perinatal hypoxic brain damage (40%, 4 of 10). The mean cumulative dose of pamidronate was $4.49{\pm}2.22mg/kg/yr$, and the mean treatment period was $10.8{\pm}3.32months$. The BMD z score of the lumbar spine showed a significant increase from $-4.22{\pm}1.24$ before treatment to $-2.61{\pm}1.69$ during treatment (P=0.008). Alkaline phosphatase decreased during treatment (P=0.037). Significant adverse drug reactions and new fractures were not reported. Conclusion: Low-dose pamidronate treatment for quadriplegic children with cerebral palsy increased lumbar BMD and reduced the incidence of fracture.

Inhibition of GM3 Synthase Attenuates Neuropathology of Niemann-Pick Disease Type C by Affecting Sphingolipid Metabolism

  • Lee, Hyun;Lee, Jong Kil;Bae, Yong Chul;Yang, Song Hyun;Okino, Nozomu;Schuchman, Edward H.;Yamashita, Tadashi;Bae, Jae-Sung;Jin, Hee Kyung
    • Molecules and Cells
    • /
    • v.37 no.2
    • /
    • pp.161-171
    • /
    • 2014
  • In several lysosomal storage disorders, including Niemann-Pick disease Type C (NP-C), sphingolipids, including glycosphingolipids, particularly gangliosides, are the predominant storage materials in the brain, raising the possibility that accumulation of these lipids may be involved in the NP-C neurodegenerative process. However, correlation of these accumulations and NP-C neuropathology has not been fully characterized. Here we derived NP-C mice with complete and partial deletion of the Siat9 (encoding GM3 synthase) gene in order to investigate the role of ganglioside in NP-C pathogenesis. According to our results, NP-C mice with homozygotic deletion of GM3 synthase exhibited an enhanced neuropathological phenotype and died significantly earlier than NP-C mice. Notably, in contrast to complete depletion, NP-C mice with partial deletion of the GM3 synthase gene showed ameliorated NP-C neuropathology, including motor disability, demyelination, and abnormal accumulation of cholesterol and sphingolipids. These findings indicate the crucial role of GM3 synthesis in the NP-C phenotype and progression of CNS pathologic abnormality, suggesting that well-controlled inhibition of GM3 synthesis could be used as a therapeutic strategy.

cDNA Cloning and Expression of a Cytochrome P450 1A (CYP1A) from the Pale Chub, Zacco platypus

  • Jeon, Hyoung-Joo;Park, Young-Chul;Lee, Wan-Ok;Lee, Jong-Ha;Kim, Jin-Hyoung
    • Korean Journal of Ecology and Environment
    • /
    • v.44 no.4
    • /
    • pp.364-372
    • /
    • 2011
  • The pale chub (Zacco platypus) is generally found in Asian countries, such as Korea, Japan, and China. Nevertheless, very little information exists about the genes involved in the metabolism of xenobiotics in this species. This species is useful in monitoring the environmental impact on various pollutants in freshwater as a sentinel fish species. We cloned the full-length cDNA sequence of xenobiotic metabolizing cytochrome P450 1A (CYP1A) gene from Z. platypus and characterized it. Tissue distribution and timedependent induction of CYP1A were studied by real-time RT-PCR. Induction pattern of CYP1A was studied by exposing the fish to an arylhydrocarbon receptor agonist, ${\beta}$-naphthoflavone (BNF). The liver showed the highest level of expression in basal state as well as BNF- treated fish. However, appreciable levels of expression were also recorded in Gill and kidney and the least level of expression was observed in the eye. The results of the time-course study revealed an induction in the liver, brain, and gills after 6 h and 12 h in most of the tissues. This study provides an insight into the xenobiotics metabolizing system of Z. platypus and offers baseline information for further research related to biomarker, stress, and adaptive response of this ecologically important fish species in the freshwater environment.

Expressional Analysis of Two Genes (Scd1 and Idi1) Down-regulated by Starvation Stress (영양고갈-스트레스에 의해서 하강발현하는 유전자(Scd1과 Idi1)의 분석)

  • Cho, Junho;Kwon, Young-Sook;Kim, Dong-Il;Kim, Bok Jo;Kwon, Kisang
    • Journal of Life Science
    • /
    • v.24 no.7
    • /
    • pp.762-768
    • /
    • 2014
  • Diet exerts a major stress on the body and may affect gene expression and physiological functions. Understanding of cellular responses during starvation is necessary in developing strategies to reduce damage caused by diet. In this study, we isolated 10 genes (Comt, RGN, Scd1, Temt, Idi1, Fabp5, Car3, Cyp2c70, Pinx1, and Poldip3) that are down-regulated in starvation and are closely related to liver metabolism. Water supply during starvation had no effect on the induction of apoptosis, autophagy, and ERQC. The genes down-regulated by starvation were associated with many related pathways rather than limited to the liver homeostasis pathway. Water supply during starvation is important. However, maintaining NaCl homeostasis is more important. The results are thought to be closely related to gender-specific metabolism in starvation and NaCl.

Identification of the Antidepressant Vilazodone as an Inhibitor of Inositol Polyphosphate Multikinase by Structure-Based Drug Repositioning

  • Lee, Boah;Park, Seung Ju;Lee, Seulgi;Park, Seung Eun;Lee, Eunhye;Song, Ji-Joon;Byun, Youngjoo;Kim, Seyun
    • Molecules and Cells
    • /
    • v.43 no.3
    • /
    • pp.222-227
    • /
    • 2020
  • Inositol polyphosphate multikinase (IPMK) is required for the biosynthesis of inositol phosphates (IPs) through the phosphorylation of multiple IP metabolites such as IP3 and IP4. The biological significance of IPMK's catalytic actions to regulate cellular signaling events such as growth and metabolism has been studied extensively. However, pharmacological reagents that inhibit IPMK have not yet been identified. We employed a structure-based virtual screening of publicly available U.S. Food and Drug Administration-approved drugs and chemicals that identified the antidepressant, vilazodone, as an IPMK inhibitor. Docking simulations and pharmacophore analyses showed that vilazodone has a higher affinity for the ATP-binding catalytic region of IPMK than ATP and we validated that vilazodone inhibits IPMK's IP kinase activities in vitro. The incubation of vilazodone with NIH3T3-L1 fibroblasts reduced cellular levels of IP5 and other highly phosphorylated IPs without influencing IP4 levels. We further found decreased Akt phosphorylation in vilazodone-treated HCT116 cancer cells. These data clearly indicate selective cellular actions of vilazodone against IPMK-dependent catalytic steps in IP metabolism and Akt activation. Collectively, our data demonstrate vilazodone as a method to inhibit cellular IPMK, providing a valuable pharmacological agent to study and target the biological and pathological processes governed by IPMK.

Influence of Lead on Repetitive Behavior and Dopamine Metabolism in a Mouse Model of Iron Overload

  • Chang, JuOae;Kueon, Chojin;Kim, Jonghan
    • Toxicological Research
    • /
    • v.30 no.4
    • /
    • pp.267-276
    • /
    • 2014
  • Exposures to lead (Pb) are associated with neurological problems including psychiatric disorders and impaired learning and memory. Pb can be absorbed by iron transporters, which are up-regulated in hereditary hemochromatosis, an iron overload disorder in which increased iron deposition in various parenchymal organs promote metal-induced oxidative damage. While dysfunction in HFE (High Fe) gene is the major cause of hemochromatosis, the transport and toxicity of Pb in Hfe-related hemochromatosis are largely unknown. To elucidate the relationship between HFE gene dysfunction and Pb absorption, H67D knock-in Hfe-mutant and wild-type mice were given drinking water containing Pb 1.6 mg/ml ad libitum for 6 weeks and examined for behavioral phenotypes using the nestlet-shredding and marble-burying tests. Latency to nestlet-shredding in Pb-treated wild-type mice was prolonged compared with non-exposed wild-types (p < 0.001), whereas Pb exposure did not alter shredding latency in Hfe-mutant mice. In the marble-burying test, Hfe-mutant mice showed an increased number of marbles buried compared with wild-type mice (p = 0.002), indicating more repetitive behavior upon Hfe mutation. Importantly, Pb-exposed wild-type mice buried more marbles than non-exposed wild-types, whereas the number of marbles buried by Hfe-mutant mice did not change whether or not exposed to Pb. These results suggest that Hfe mutation could normalize Pb-induced behavioral alteration. To explore the mechanism of repetitive behavior caused by Pb, western blot analysis was conducted for proteins involved in brain dopamine metabolism. The levels of tyrosine hydroxylase and dopamine transporter increased upon Pb exposure in both genotypes, whereas Hfe-mutant mice displayed down-regulation of the dopamine transporter and dopamine D1 receptor with D2 receptor elevated. Taken together, our data support the idea that both Pb exposure and Hfe mutation increase repetitive behavior in mice and further suggest that these behavioral changes could be associated with altered dopaminergic neurotransmission, providing a therapeutic basis for psychiatric disorders caused by Pb toxicity.

Systematic analysis of the pharmacological function of Schisandra as a potential exercise supplement

  • Hong, Bok Sil;Baek, Suji;Kim, Myoung-Ryu;Park, Sun Mi;Kim, Bom Sahn;Kim, Jisu;Lee, Kang Pa
    • Korean Journal of Exercise Nutrition
    • /
    • v.25 no.4
    • /
    • pp.38-44
    • /
    • 2021
  • [Purpose] Exercise can prevent conditions such as atrophy and degenerative brain diseases. However, owing to individual differences in athletic ability, exercise supplements can be used to improve a person's exercise capacity. Schisandra chinensis (SC) is a natural product with various physiologically active effects. In this study, we analyzed SC using a pharmacological network and determined whether it could be used as an exercise supplement. [Methods] The active compounds of SC and target genes were identified using the Traditional Chinese Medicine Database and Analysis Platform (TCMSP). The active compound and target genes were selected based on pharmacokinetic (PK) conditions (oral bioavailability (OB) ≥ 30%, Caco-2 permeability (Caco-2) ≥ -0.4, and drug-likeness (DL) ≥ 0.18). Gene ontology (GO) was analyzed using the Cytoscape software. [Results] Eight active compounds were identified according to the PK conditions. Twenty-one target genes were identified after excluding duplicates in the eight active compounds. The top 10 GOs were analyzed using GO-biological process analysis. GO was subsequently divided into three representative categories: postsynaptic neurotransmitter receptor activity (53.85%), an intracellular steroid hormone receptor signaling pathway (36.46%), and endopeptidase activity (10%). SC is related to immune function. [Conclusion] According to the GO analysis, SC plays a role in immunity and inflammation, promotes liver metabolism, improves fatigue, and regulates the function of steroid receptors. Therefore, we suggest SC as an exercise supplement with nutritional and anti-fatigue benefits.

Stomach clusterin as a gut-derived feeding regulator

  • Cherl NamKoong;Bohye Kim;Ji Hee Yu;Byung Soo Youn;Hanbin Kim;Evonne Kim;So Young Gil;Gil Myoung Kang;Chan Hee Lee;Young-Bum Kim;Kyeong-Han Park;Min-Seon Kim;Obin Kwon
    • BMB Reports
    • /
    • v.57 no.3
    • /
    • pp.149-154
    • /
    • 2024
  • The stomach has emerged as a crucial endocrine organ in the regulation of feeding since the discovery of ghrelin. Gut-derived hormones, such as ghrelin and cholecystokinin, can act through the vagus nerve. We previously reported the satiety effect of hypothalamic clusterin, but the impact of peripheral clusterin remains unknown. In this study, we administered clusterin intraperitoneally to mice and observed its ability to suppress fasting-driven food intake. Interestingly, we found its synergism with cholecystokinin and antagonism with ghrelin. These effects were accompanied by increased c-fos immunoreactivity in nucleus tractus solitarius, area postrema, and hypothalamic paraventricular nucleus. Notably, truncal vagotomy abolished this response. The stomach expressed clusterin at high levels among the organs, and gastric clusterin was detected in specific enteroendocrine cells and the submucosal plexus. Gastric clusterin expression decreased after fasting but recovered after 2 hours of refeeding. Furthermore, we confirmed that stomachspecific overexpression of clusterin reduced food intake after overnight fasting. These results suggest that gastric clusterin may function as a gut-derived peptide involved in the regulation of feeding through the gut-brain axis.