• 제목/요약/키워드: Brain metabolism

검색결과 289건 처리시간 0.022초

cDNA Cloning and Expression of a Cytochrome P450 1A (CYP1A) from the Pale Chub, Zacco platypus

  • Jeon, Hyoung-Joo;Park, Young-Chul;Lee, Wan-Ok;Lee, Jong-Ha;Kim, Jin-Hyoung
    • 생태와환경
    • /
    • 제44권4호
    • /
    • pp.364-372
    • /
    • 2011
  • The pale chub (Zacco platypus) is generally found in Asian countries, such as Korea, Japan, and China. Nevertheless, very little information exists about the genes involved in the metabolism of xenobiotics in this species. This species is useful in monitoring the environmental impact on various pollutants in freshwater as a sentinel fish species. We cloned the full-length cDNA sequence of xenobiotic metabolizing cytochrome P450 1A (CYP1A) gene from Z. platypus and characterized it. Tissue distribution and timedependent induction of CYP1A were studied by real-time RT-PCR. Induction pattern of CYP1A was studied by exposing the fish to an arylhydrocarbon receptor agonist, ${\beta}$-naphthoflavone (BNF). The liver showed the highest level of expression in basal state as well as BNF- treated fish. However, appreciable levels of expression were also recorded in Gill and kidney and the least level of expression was observed in the eye. The results of the time-course study revealed an induction in the liver, brain, and gills after 6 h and 12 h in most of the tissues. This study provides an insight into the xenobiotics metabolizing system of Z. platypus and offers baseline information for further research related to biomarker, stress, and adaptive response of this ecologically important fish species in the freshwater environment.

영양고갈-스트레스에 의해서 하강발현하는 유전자(Scd1과 Idi1)의 분석 (Expressional Analysis of Two Genes (Scd1 and Idi1) Down-regulated by Starvation Stress)

  • 조준호;권영숙;김동일;김복조;권기상
    • 생명과학회지
    • /
    • 제24권7호
    • /
    • pp.762-768
    • /
    • 2014
  • Starvation에 의해서 down-regulation 되는 유전자 10개를 얻었다(Comt, RGN, Scd1, Temt, Idi1, Fabp5, Car3, Cyp2c70, Pinx1, Poldip3). 이들은 starvation에 의한 대사변화의 대부분은 liver와 관련된 것으로 볼 수 있다. Starvation중에 물 공급은 암수 동일하게 apoptosis, autophage, endoplasmic reticulum quality control (ERQC)유도에 영향을 미치지 않았다. 이 같이 starvation에 의해서 down-regulation되는 유전자발현조절이 liver에 국한된 것이라기보다는 개체의 항상성유지에 관련 많은 pathway가 관련되어있는 것으로 판단된다. 장기간의 간혈 starvation은 glucose소비가 많은 brain과 면역기능조절에 중요한 thymus의 정상기능에 영향을 미칠 수 있는 것으로 보인다. 유전자 Scd1의 경우는 ♀보다가 ♂이 민감한 반응을 보이는 것으로 보아 ♀/♂의 성 특이적인 대사에 starvation과 NaCl이 밀접한 관계가 있는 것으로 보인다. Starvation시 물 공급도 중요하지만 개체의 항상성유지에 NaCl공급이 중요하다는 결과를 얻었다.

Identification of the Antidepressant Vilazodone as an Inhibitor of Inositol Polyphosphate Multikinase by Structure-Based Drug Repositioning

  • Lee, Boah;Park, Seung Ju;Lee, Seulgi;Park, Seung Eun;Lee, Eunhye;Song, Ji-Joon;Byun, Youngjoo;Kim, Seyun
    • Molecules and Cells
    • /
    • 제43권3호
    • /
    • pp.222-227
    • /
    • 2020
  • Inositol polyphosphate multikinase (IPMK) is required for the biosynthesis of inositol phosphates (IPs) through the phosphorylation of multiple IP metabolites such as IP3 and IP4. The biological significance of IPMK's catalytic actions to regulate cellular signaling events such as growth and metabolism has been studied extensively. However, pharmacological reagents that inhibit IPMK have not yet been identified. We employed a structure-based virtual screening of publicly available U.S. Food and Drug Administration-approved drugs and chemicals that identified the antidepressant, vilazodone, as an IPMK inhibitor. Docking simulations and pharmacophore analyses showed that vilazodone has a higher affinity for the ATP-binding catalytic region of IPMK than ATP and we validated that vilazodone inhibits IPMK's IP kinase activities in vitro. The incubation of vilazodone with NIH3T3-L1 fibroblasts reduced cellular levels of IP5 and other highly phosphorylated IPs without influencing IP4 levels. We further found decreased Akt phosphorylation in vilazodone-treated HCT116 cancer cells. These data clearly indicate selective cellular actions of vilazodone against IPMK-dependent catalytic steps in IP metabolism and Akt activation. Collectively, our data demonstrate vilazodone as a method to inhibit cellular IPMK, providing a valuable pharmacological agent to study and target the biological and pathological processes governed by IPMK.

Influence of Lead on Repetitive Behavior and Dopamine Metabolism in a Mouse Model of Iron Overload

  • Chang, JuOae;Kueon, Chojin;Kim, Jonghan
    • Toxicological Research
    • /
    • 제30권4호
    • /
    • pp.267-276
    • /
    • 2014
  • Exposures to lead (Pb) are associated with neurological problems including psychiatric disorders and impaired learning and memory. Pb can be absorbed by iron transporters, which are up-regulated in hereditary hemochromatosis, an iron overload disorder in which increased iron deposition in various parenchymal organs promote metal-induced oxidative damage. While dysfunction in HFE (High Fe) gene is the major cause of hemochromatosis, the transport and toxicity of Pb in Hfe-related hemochromatosis are largely unknown. To elucidate the relationship between HFE gene dysfunction and Pb absorption, H67D knock-in Hfe-mutant and wild-type mice were given drinking water containing Pb 1.6 mg/ml ad libitum for 6 weeks and examined for behavioral phenotypes using the nestlet-shredding and marble-burying tests. Latency to nestlet-shredding in Pb-treated wild-type mice was prolonged compared with non-exposed wild-types (p < 0.001), whereas Pb exposure did not alter shredding latency in Hfe-mutant mice. In the marble-burying test, Hfe-mutant mice showed an increased number of marbles buried compared with wild-type mice (p = 0.002), indicating more repetitive behavior upon Hfe mutation. Importantly, Pb-exposed wild-type mice buried more marbles than non-exposed wild-types, whereas the number of marbles buried by Hfe-mutant mice did not change whether or not exposed to Pb. These results suggest that Hfe mutation could normalize Pb-induced behavioral alteration. To explore the mechanism of repetitive behavior caused by Pb, western blot analysis was conducted for proteins involved in brain dopamine metabolism. The levels of tyrosine hydroxylase and dopamine transporter increased upon Pb exposure in both genotypes, whereas Hfe-mutant mice displayed down-regulation of the dopamine transporter and dopamine D1 receptor with D2 receptor elevated. Taken together, our data support the idea that both Pb exposure and Hfe mutation increase repetitive behavior in mice and further suggest that these behavioral changes could be associated with altered dopaminergic neurotransmission, providing a therapeutic basis for psychiatric disorders caused by Pb toxicity.

Systematic analysis of the pharmacological function of Schisandra as a potential exercise supplement

  • Hong, Bok Sil;Baek, Suji;Kim, Myoung-Ryu;Park, Sun Mi;Kim, Bom Sahn;Kim, Jisu;Lee, Kang Pa
    • 운동영양학회지
    • /
    • 제25권4호
    • /
    • pp.38-44
    • /
    • 2021
  • [Purpose] Exercise can prevent conditions such as atrophy and degenerative brain diseases. However, owing to individual differences in athletic ability, exercise supplements can be used to improve a person's exercise capacity. Schisandra chinensis (SC) is a natural product with various physiologically active effects. In this study, we analyzed SC using a pharmacological network and determined whether it could be used as an exercise supplement. [Methods] The active compounds of SC and target genes were identified using the Traditional Chinese Medicine Database and Analysis Platform (TCMSP). The active compound and target genes were selected based on pharmacokinetic (PK) conditions (oral bioavailability (OB) ≥ 30%, Caco-2 permeability (Caco-2) ≥ -0.4, and drug-likeness (DL) ≥ 0.18). Gene ontology (GO) was analyzed using the Cytoscape software. [Results] Eight active compounds were identified according to the PK conditions. Twenty-one target genes were identified after excluding duplicates in the eight active compounds. The top 10 GOs were analyzed using GO-biological process analysis. GO was subsequently divided into three representative categories: postsynaptic neurotransmitter receptor activity (53.85%), an intracellular steroid hormone receptor signaling pathway (36.46%), and endopeptidase activity (10%). SC is related to immune function. [Conclusion] According to the GO analysis, SC plays a role in immunity and inflammation, promotes liver metabolism, improves fatigue, and regulates the function of steroid receptors. Therefore, we suggest SC as an exercise supplement with nutritional and anti-fatigue benefits.

Stomach clusterin as a gut-derived feeding regulator

  • Cherl NamKoong;Bohye Kim;Ji Hee Yu;Byung Soo Youn;Hanbin Kim;Evonne Kim;So Young Gil;Gil Myoung Kang;Chan Hee Lee;Young-Bum Kim;Kyeong-Han Park;Min-Seon Kim;Obin Kwon
    • BMB Reports
    • /
    • 제57권3호
    • /
    • pp.149-154
    • /
    • 2024
  • The stomach has emerged as a crucial endocrine organ in the regulation of feeding since the discovery of ghrelin. Gut-derived hormones, such as ghrelin and cholecystokinin, can act through the vagus nerve. We previously reported the satiety effect of hypothalamic clusterin, but the impact of peripheral clusterin remains unknown. In this study, we administered clusterin intraperitoneally to mice and observed its ability to suppress fasting-driven food intake. Interestingly, we found its synergism with cholecystokinin and antagonism with ghrelin. These effects were accompanied by increased c-fos immunoreactivity in nucleus tractus solitarius, area postrema, and hypothalamic paraventricular nucleus. Notably, truncal vagotomy abolished this response. The stomach expressed clusterin at high levels among the organs, and gastric clusterin was detected in specific enteroendocrine cells and the submucosal plexus. Gastric clusterin expression decreased after fasting but recovered after 2 hours of refeeding. Furthermore, we confirmed that stomachspecific overexpression of clusterin reduced food intake after overnight fasting. These results suggest that gastric clusterin may function as a gut-derived peptide involved in the regulation of feeding through the gut-brain axis.

타우린의 일반적 특성에 관한 선행연구 고찰 (General Characteristics of Taurine: A Review)

  • 윤진아;최경순;신경옥
    • 한국식품영양학회지
    • /
    • 제28권3호
    • /
    • pp.404-414
    • /
    • 2015
  • Taurine is one of the most abundant free ${\beta}$-amino acids in the human body that accounts for 0.1% of the human body weight. It has a sulfonic acid group in place of the more common carboxylic acid group. Mollusks and meat are the major dietary source of taurine, and mother's milks also include high levels of this amino acid. The leukocytes, heart, muscle, retina, kidney, bone, and brain contain more taurine than other organs. Furthermore, taurine can be synthesized in the brain and liver from cysteine. There are no side effects of excessive taurine intake in humans; however, in case of taurine deficiency, retinal abnormalities, reduced plasma taurine concentration, and other abnormalities may occur. Taurine enters the cell via a cell membrane receptor. It is excreted in the urine (approximately 95%) and feces (approximately 5%). Taurine has a number of features and functions, including conjugation with bile acid, reduction of blood cholesterol and triglyceride levels, promotion of neuron cell differentiation and growth, antioxidant effects, maintenance of cell membrane stability, retinal development, energy generation, depressant effects, regulation of calcium level, muscle contraction and relaxation, bone formation, anti-inflammatory effects, anti-cancer and anti-atherogenic effects, and osmotic pressure control. However, the properties, functions, and effects of taurine require further studies in future.

Study on Pharmacokinetics of a new NSAID SJ-151

  • Kim, Dong-Sup;Na, Han-Kwang;Park, In-Sook;Im, Dong-Suk;Park, Ki-Hwan;Chang, Young-Sup;Lee, Young-Keun
    • 한국응용약물학회:학술대회논문집
    • /
    • 한국응용약물학회 1997년도 춘계학술대회
    • /
    • pp.106-106
    • /
    • 1997
  • Cinmetacin, one of the candidate of NSAID of arylacetate group was developed into a prodrug SJ-151 with butendiol group to minimize its gastrointestinal side effects. We studied its excretion and distribution after single oral administration in rats. Male rats were orally administered with 30, 60, 80 or 120mg/kg of SJ-151 and their urine and stool were collected at 0, 6, 12, 24 and 48 hour after administration. To evaluate its tissue distribution, 120mg/kg of SJ-151 was orally given and samples of blood, liver, kidney and brain were taken at 0.5, 1, 2, 4, 8, 24, and 48 hour of administration. As results, less than 0.1% of administered SJ-151 was detected in 48 hour collected urine as its metabolite cinmetacin. 33-50% of administered SJ-151 was observed in 48 hour collected stool as SJ-151. 3-7% of excreted SJ-151 was observed in 48 hour collected stool as cinmetacin. SJ-151 and cinmetacin were not detected in the brain regardless of dosage. SJ-151 was detected neither in kidney nor in liver. Only cinmetacin was observed in both organs with kidney concentrations higher than liver throughout the observation period. On the whole, organ concentration of cinmetacin fluctuated through 0.1-1.5 times that of plasma. As no reports on the metabolism of SJ-151 or cinmetacin in specific organs has been published yet, any detailed explanation of these results needs further study and the plasma concentration profile of rats showed remarkable interspecies difference with dogs.

  • PDF

The Effects of Astragalus Membranaceus on Repeated Restraint Stress-induced Biochemical and Behavioral Responses

  • Park, Hyun-Jung;Kim, Hyun-Young;Yoon, Kun-Ho;Kim, Kyung-Soo;Shim, In-Sop
    • The Korean Journal of Physiology and Pharmacology
    • /
    • 제13권4호
    • /
    • pp.315-319
    • /
    • 2009
  • Astragalus Membranaceus (AM) is a useful Korean herb that has been clinically prescribed for stress-related illness. The objective of the present study was to examine the anti-stress effects of AM on repeated stress-induced alterations of anxiety, learning and memory in rats. Restraint stress was administered for 14 days (2h/day) and AM (400mg/kg) given by oral administration, in the AM group, for the same period. Starting on the eighth day, the rats were tested for spatial memory on the Morris water maze test (MW) and for anxiety on the elevated plus maze (EPM). Changes of expression on immunohistochemistry were studied for cholineacetyl transferase (ChAT) and tyrosine hydroxylase (TH) in the brain. The results showed that the rats treated with AM had significantly reduced stress-induced deficits on learning and memory on the spatial memory tasks. In addition, the ChAT immunoreactivities were increased. In the EPM, treatment with AM increased the time spent in the open arms (p<0.001) compared to the control group. In addition, AM treatment also normalized increases of TH expression in the LC (p<0.001). In conclusion, administration of AM improved spatial learning and memory and reduced stress-induced anxiety. Thus, the present results suggest that AM is able to recover behavioral and neurochemical impairments induced by stress.

Characterization of a novel posttranslational modification in polypyrimidine tract-binding proteins by SUMO1

  • Han, Wei;Wang, Lin;Yin, Bin;Peng, Xiaozhong
    • BMB Reports
    • /
    • 제47권4호
    • /
    • pp.233-238
    • /
    • 2014
  • Polypyrimidine tract-binding protein 1 (PTBP1) and its brain-specific homologue, PTBP2, are associated with pre-mRNAs and influence pre-mRNA processing, as well as mRNA metabolism and transport. They play important roles in neural differentiation and glioma development. In our study, we detected the expression of the two proteins in glioma cells and predicted that they may be sumoylated using SUMOplot analyses. We confirmed that PTBP1 and PTBP2 can be modified by SUMO1 with co-immunoprecipitation experiments using 293ET cells transiently co-expressing SUMO1 and either PTBP1 or PTBP2. We also found that SUMO1 modification of PTBP2 was enhanced by Ubc9 (E2). The mutation of the sumoylation site (Lys137) of PTBP2 markedly inhibited its modification by SUMO1. Interestingly, in T98G glioma cells, the level of sumoylated PTBP2 was reduced compared to that of normal brain cells. Overall, this study shows that PTBP2 is posttranslationally modified by SUMO1.