• Title/Summary/Keyword: Brain magnetic resonance imaging (MRI)

Search Result 510, Processing Time 0.022 seconds

Accurate Localization of Metal Electrodes Using Magnetic Resonance Imaging (자기공명영상을 이용한 금속전극의 정확한 위치 결정)

  • Joe, Eun-Hae;Ghim, Min-Oh;Ha, Yoon;Kim, Dong-Hyun
    • Investigative Magnetic Resonance Imaging
    • /
    • v.15 no.1
    • /
    • pp.11-21
    • /
    • 2011
  • Purpose : Localization using MRI is difficult due to susceptibility induced artifacts caused by metal electrodes. Here we took an advantage of the B0 pattern induced by the metal electrodes by using an oblique-view imaging method. Materials and Methods : Metal electrode models with various diameters and susceptibilities were simulated to understand the aspect of field distortion. We set localization criteria for a turbo spin-echo (TSE) sequence usingconventional ($90^{\circ}$ view) and $45^{\circ}$ oblique-view imaging method through simulation of images with various resolutions and validated the criteria usingphantom images acquired by a 3.0T clinical MRI system. For a gradient-refocused echo (GRE) sequence, which is relatively more sensitive to field inhomogeneity, we used phase images to find the center of electrode. Results : There was least field inhomogeneity along the $45^{\circ}$ line that penetrated the center of the electrode. Therefore, our criteria for the TSE sequence with $45^{\circ}$ oblique-view was coincided regardless of susceptibility. And with $45^{\circ}$ oblique-view angle images, pixel shifts were bidirectional so we can detect the location of electrodes even in low resolution. For the GRE sequence, the $45^{\circ}$ oblique-view anglemethod madethe lines where field polarity changes become coincident to the Cartesian grid so the localization of the center coordinates was more facilitated. Conclusion : We suggested the method for accurate localization of electrode using $45^{\circ}$ oblique-view angle imaging. It is expected to be a novelmethodto monitoring an electrophysiological brain study and brain neurosurgery.

A fMRI Meta-analysis on Neuroimaging Studies of Basic Emotions (기본정서 뇌 영상 연구의 fMRI 메타분석)

  • Kim, Gwang-Su;Han, Mi-Ra;Bak, Byung-Gee
    • Science of Emotion and Sensibility
    • /
    • v.20 no.4
    • /
    • pp.15-30
    • /
    • 2017
  • The purpose of this study was to verify the basic emotion theory based on the emotion-related research using functional brain imaging technology. For this purpose, a meta-analysis on the functional magnetic resonance imaging (fMRI) studies was performed. Six individual emotions-joy, happiness, fear, anger, disgust, sadness-were selected. In order to collect the fMRI data of individual emotions, we searched the electronic journals such as Medline, PsychInfo, PubMed for the past 10 years. fMRI experiment data aimed at healthy subjects for 6 emotions were collected, and only studies reported in Talairach or MNI standard coordinate system were included. In order to eliminate the difference between Talairach and MNI coordinate systems, we analyzed fMRI data based on the Talairach coordinate system. A meta-analysis using GingerALE 2.3 program adopting the activation likelihood estimates (ALE) techniques was performed. In this study, we confirmed that the individual emotions are associated with consistent and distinguishable regional brain responses within the framework of the basic emotion theory. The conclusion of this study of the brain areas associated with each individual emotional reaction was substantially consistent with the results of existing review articles. Finally, the limitations of this study and some suggestions for the future research were presented.

High-Resolution MRI Study on Mouse Brain Using Micro-Imaging (초고해상도 미세영상 기법을 이용한 Mouse 뇌의 자기공명영상 연구)

  • Han, Doug-Young;Yoon, Moon-Hyun;Choe, Bo-Young
    • Investigative Magnetic Resonance Imaging
    • /
    • v.12 no.2
    • /
    • pp.142-147
    • /
    • 2008
  • Purpose : By using the micro-imaging unit modified from NMR spectrometer, the high resolution MRI protocols of finer than 100 micron in 5 minutes, is sought for mouse, which plays a central role in animal studies Materials and Methods : C57BL/6 mouse, lighter than 50 gram, is used for the experiments. The superconducting magnet is vertical type with 89 mm inner diameter at 4.9 Tesla. The diameter of rf-coil is 30 mm. Mostly used techniques are the fast spin echo and the gradient echo pulse sequence. Results : For 2D images, proton density and T2 weighted images are obtained and their optimum experimental variables were sought. Minute structure of mouse brain can be recognized and 3D brain image is also obtained additionally. 3D image will be useful particularly for the dynamic contrast study using various contrast agents. Conclusion : Like the case of human and other small animals, the high resolution of mouse brain is enough to recognize the minute structure of it. Recently, similar studies are reported domestically, but it seems only a beginning stage. Due to easiness of breeding/control, mouse MRI study will soon play a vital part in brain study.

  • PDF

Biases in the Assessment of Left Ventricular Function by Compressed Sensing Cardiovascular Cine MRI

  • Yoon, Jong-Hyun;Kim, Pan-ki;Yang, Young-Joong;Park, Jinho;Choi, Byoung Wook;Ahn, Chang-Beom
    • Investigative Magnetic Resonance Imaging
    • /
    • v.23 no.2
    • /
    • pp.114-124
    • /
    • 2019
  • Purpose: We investigate biases in the assessments of left ventricular function (LVF), by compressed sensing (CS)-cine magnetic resonance imaging (MRI). Materials and Methods: Cardiovascular cine images with short axis view, were obtained for 8 volunteers without CS. LVFs were assessed with subsampled data, with compression factors (CF) of 2, 3, 4, and 8. A semi-automatic segmentation program was used, for the assessment. The assessments by 3 CS methods (ITSC, FOCUSS, and view sharing (VS)), were compared to those without CS. Bland-Altman analysis and paired t-test were used, for comparison. In addition, real-time CS-cine imaging was also performed, with CF of 2, 3, 4, and 8 for the same volunteers. Assessments of LVF were similarly made, for CS data. A fixed compensation technique is suggested, to reduce the bias. Results: The assessment of LVF by CS-cine, includes bias and random noise. Bias appeared much larger than random noise. Median of end-diastolic volume (EDV) with CS-cine (ITSC or FOCUSS) appeared -1.4% to -7.1% smaller, compared to that of standard cine, depending on CF from (2 to 8). End-systolic volume (ESV) appeared +1.6% to +14.3% larger, stroke volume (SV), -2.4% to -16.4% smaller, and ejection fraction (EF), -1.1% to -9.2% smaller, with P < 0.05. Bias was reduced from -5.6% to -1.8% for EF, by compensation applied to real-time CS-cine (CF = 8). Conclusion: Loss of temporal resolution by adopting missing data from nearby cardiac frames, causes an underestimation for EDV, and an overestimation for ESV, resulting in underestimations for SV and EF. The bias is not random. Thus it should be removed or reduced for better diagnosis. A fixed compensation is suggested, to reduce bias in the assessment of LVF.

Assessment of Meningeal Lymphatics in the Parasagittal Dural Space: A Prospective Feasibility Study Using Dynamic Contrast-Enhanced Magnetic Resonance Imaging

  • Bio Joo;Mina Park;Sung Jun Ahn;Sang Hyun Suh
    • Korean Journal of Radiology
    • /
    • v.24 no.5
    • /
    • pp.444-453
    • /
    • 2023
  • Objective: Meningeal lymphatic vessels are predominantly located in the parasagittal dural space (PSD); these vessels drain interstitial fluids out of the brain and contribute to the glymphatic system. We aimed to investigate the ability of dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) in assessing the dynamic changes in the meningeal lymphatic vessels in PSD. Materials and Methods: Eighteen participants (26-71 years; male:female, 10:8), without neurological or psychiatric diseases, were prospectively enrolled and underwent DCE-MRI. Three regions of interests (ROIs) were placed on the PSD, superior sagittal sinus (SSS), and cortical vein. Early and delayed enhancement patterns and six kinetic curve-derived parameters were obtained and compared between the three ROIs. Moreover, the participants were grouped into the young (< 65 years; n = 9) or older (≥ 65 years; n = 9) groups. Enhancement patterns and kinetic curve-derived parameters in the PSD were compared between the two groups. Results: The PSD showed different enhancement patterns than the SSS and cortical veins (P < 0.001 and P < 0.001, respectively) in the early and delayed phases. The PSD showed slow early enhancement and a delayed wash-out pattern. The six kinetic curve-derived parameters of PSD was significantly different than that of the SSS and cortical vein. The PSD washout rate of older participants was significantly lower (median, 0.09; interquartile range [IQR], 0.01-0.15) than that of younger participants (median, 0.32; IQR, 0.07-0.45) (P = 0.040). Conclusion: This study shows that the dynamic changes of meningeal lymphatic vessels in PSD can be assessed with DCE-MRI, and the results are different from those of the venous structures. Our finding that delayed wash-out was more pronounced in the PSD of older participants suggests that aging may disturb the meningeal lymphatic drainage.

Accelerating Magnetic Resonance Fingerprinting Using Hybrid Deep Learning and Iterative Reconstruction

  • Cao, Peng;Cui, Di;Ming, Yanzhen;Vardhanabhuti, Varut;Lee, Elaine;Hui, Edward
    • Investigative Magnetic Resonance Imaging
    • /
    • v.25 no.4
    • /
    • pp.293-299
    • /
    • 2021
  • Purpose: To accelerate magnetic resonance fingerprinting (MRF) by developing a flexible deep learning reconstruction method. Materials and Methods: Synthetic data were used to train a deep learning model. The trained model was then applied to MRF for different organs and diseases. Iterative reconstruction was performed outside the deep learning model, allowing a changeable encoding matrix, i.e., with flexibility of choice for image resolution, radiofrequency coil, k-space trajectory, and undersampling mask. In vivo experiments were performed on normal brain and prostate cancer volunteers to demonstrate the model performance and generalizability. Results: In 400-dynamics brain MRF, direct nonuniform Fourier transform caused a slight increase of random fluctuations on the T2 map. These fluctuations were reduced with the proposed method. In prostate MRF, the proposed method suppressed fluctuations on both T1 and T2 maps. Conclusion: The deep learning and iterative MRF reconstruction method described in this study was flexible with different acquisition settings such as radiofrequency coils. It is generalizable for different in vivo applications.

T2 Relaxographic Mapping using 8-echo CPMG MRI Pulse Sequence

  • E-K. Jeong;Lee, S-H.;J-S. Suh;Y-Y wak;S-A. Shin;Y-K. Kwon;Y. Huh
    • Journal of the Korean Magnetic Resonance Society
    • /
    • v.1 no.1
    • /
    • pp.7-20
    • /
    • 1997
  • The mapping of the spin-spin relaxation time T2 in pixed-by-pixel was suggested as a quantitative diagnostic tool in medicine. Although the CPMG pulse sequence has been known to be the best pulse sequence for T2 measurement in physics NMR, the supplied pulse sequence by the manufacture of MRI system was able to obtain the maximum of 4 CPMG images. Eight or more images with different echo time TEs are required to construct a reliable T2 map, so that two or more acquisitions were required, which easily took more than 10 minutes. 4-echo CPMG imaging pulse sequence was modified to generate the maximum of 8 MR images with evenly spaced echo time TEs. In human MR imaging, since patients tend to move at least several pixels between the different acquisitions, 8-echo CPMG imaging sequence reduces the acquisition time and may remove any misregistration of each pixel's signal for the fitting T2. The resultant T2 maps using the theoretically simulated images and using the MR images of the human brain suggested that 8 echo CPMG sequence with short echo spacing such as 17∼20 msec can give the reliable T2 map.

  • PDF

Brain Activation Evoked by Sensory Stimulation in Patients with Spinal Cord Injury : Functional Magnetic Resonance Imaging Correlations with Clinical Features

  • Lee, Jun Ki;Oh, Chang Hyun;Kim, Ji Yong;Park, Hyung-Chun;Yoon, Seung Hwan
    • Journal of Korean Neurosurgical Society
    • /
    • v.58 no.3
    • /
    • pp.242-247
    • /
    • 2015
  • Objective : The purpose of this study is to determine whether the changes of contralateral sensorimotor cortical activation on functional magnetic resonance imaging (fMRI) can predict the neurological outcome among spinal cord injury (SCI) patients when the great toes are stimulated without notice. Methods : This study enrolled a total of 49 patients with SCI and investigated each patient's preoperative fMRI, postoperative fMRI, American Spinal Injury Association (ASIA) score, and neuropathic pain occurrence. Patients were classified into 3 groups according to the change of blood oxygenation level dependent (BOLD) response on perioperative fMRI during proprioceptive stimulation with repetitive passive toe movements : 1) patients with a response of contralateral sensorimotor cortical activation in fMRI were categorized; 2) patients with a response in other regions; and 3) patients with no response. Correlation between the result of fMRI and each parameter was analyzed. Results : In fMRI data, ASIA score was likely to show greater improvement in patients in group A compared to those belonging to group B or C (p<0.001). No statistical significance was observed between the result of fMRI and neuropathic pain (p=0.709). However, increase in neuropathic pain in response to the signal change of the ipsilateral frontal lobe on fMRI was statistically significant (p=0.030). Conclusion : When there was change of BOLD response at the contralateral sensorimotor cortex on perioperative fMRI after surgery, relief of neurological symptoms was highly likely for traumatic SCI patients. In addition, development of neuropathic pain was likely to occur when there was change of BOLD response at ipsilateral frontal lobe.

Clinical characteristics of hypertensive encephalopathy in pediatric patients

  • Ahn, Chang Hoon;Han, Seung-A;Kong, Young Hwa;Kim, Sun Jun
    • Clinical and Experimental Pediatrics
    • /
    • v.60 no.8
    • /
    • pp.266-271
    • /
    • 2017
  • Purpose: The aim of this study was to assess the clinical characteristics of hypertensive encephalopathy according to the underlying etiologies in children. Methods: We retrospectively evaluated 33 pediatric patients who were diagnosed as having hypertensive encephalopathy in Chonbuk National University Children's Hospital. Among the patients, 18 were excluded because of incomplete data or because brain magnetic resonance imaging (MRI) was not performed. Finally, 17 patients were enrolled and divided into a renal-origin hypertension group and a non-renal-origin hypertension group according to the underlying cause. We compared the clinical features and brain MRI findings between the 2 groups. Results: The renal group included renal artery stenosis (4), acute poststreptococcal glomerulonephritis (2), lupus nephritis (2), and acute renal failure (1); the nonrenal group included essential hypertension (4), pheochromocytoma (2), thyrotoxicosis (1), and acute promyelocytic leukemia (1). The mean systolic blood pressure of the renal group ($172.5{\pm}36.9mmHg$) was higher than that of the nonrenal group ($137.1{\pm}11.1mmHg$, P<0.05). Seizure was the most common neurologic symptom, especially in the renal group (P<0.05). Posterior reversible encephalopathy syndrome (PRES), which is the most typical finding of hypertensive encephalopathy, was found predominantly in the renal group as compared with the nonrenal group (66.6% vs. 12.5%, P<0.05). Conclusion: We conclude that the patients with renal-origin hypertension had a more severe clinical course than those with non-renal-origin hypertension. Furthermore, the renal-origin group was highly associated with PRES on brain MRI.

Transient splenial lesion of the corpus callosum in a case of benign convulsion associated with rotaviral gastroenteritis

  • Jang, Yoon-Young;Lee, Kye-Hyang
    • Clinical and Experimental Pediatrics
    • /
    • v.53 no.9
    • /
    • pp.859-862
    • /
    • 2010
  • Transient magnetic resonance (MR) signal changes in the splenium of the corpus callosum (SCC) arise from many different conditions, including encephalopathy or encephalitis caused by infection, seizures, metabolic derangements, and asphyxia. Few case reports exist on reversible SCC lesions associated with rotavirus infection. A benign convulsion with mild gastroenteritis (CwG) is frequently associated with rotaviral infections. This entity is characterized by normal laboratory findings, electroencephalogram, neuroimaging, and good prognosis. We report a case of a 2.5-year-old Korean girl with rotavirus-associated CwG demonstrating a reversible SCC lesion on diffusion-weighted MR images. She developed 2 episodes of brief generalized tonic-clonic seizure with mild acute gastroenteritis without any other neurologic abnormality. Stool test for rotavirus antigen was positive. Brain MRI done on the day of admission showed a linear high signal intensity and decreased apparent diffusion coefficient values on the SCC. The lesion completely disappeared on follow-up MRI 6 days later. The patient fully recovered without any sequelae.