• 제목/요약/키워드: Brain ischemia

검색결과 403건 처리시간 0.033초

Complete Recovery of Perfusion Abnormalities in a Cardiac Arrest Patient Treated with Hypothermia: Results of Cerebral Perfusion MR Imaging

  • Kim, Min Jeong;Park, Yae Won;Lim, Soo Mee
    • Investigative Magnetic Resonance Imaging
    • /
    • 제22권1호
    • /
    • pp.56-60
    • /
    • 2018
  • Therapeutic hypothermia in cardiac arrest patients is associated with favorable outcomes mediated via neuroprotective mechanisms. We report a rare case of a 32-year-old male who demonstrated complete recovery of signal changes on perfusion-weighted imaging after therapeutic hypothermia due to cardiac arrest. Brain MRI with perfusion-weighted imaging, performed three days after ending the hypothermia therapy, showed a marked decrease in relative cerebral blood flow (rCBF) and delay in mean transit time (MTT) in the bilateral basal ganglia, thalami, brain stem, cerebellum, occipitoparietal cortex, and frontotemporal cortex. However, no cerebral ischemia was not noted on diffusion-weighted imaging (DWI) or fluid-attenuated inversion recovery (FLAIR) sequences. A follow-up brain MRI after one week showed complete resolution of the perfusion deficit and the patient was discharged without any neurologic sequelae. The mechanism and interpretation of the perfusion changes in cardiac arrest patients treated with therapeutic hypothermia are discussed.

허혈경계부의 감소를 보인 뇌졸중 환자에 대한 증례보고 (Study on the Ischemic penumbra concept in stroke patient by case study)

  • 고성규
    • 대한한방내과학회지
    • /
    • 제21권2호
    • /
    • pp.341-348
    • /
    • 2000
  • I have treated one ischemic stroke patient in acute stage with Seonghyangjeonggi-san, and observed remarkable reduction of the size ischemic portion in brain CT, notable improved motor power of patient. So I report this case of stroke patint. The ischemic penumbra, simply stated, is the part of the brain that is sandwiched brain regions committed to die and those that receive enough blood to communicate. Therefore, it is ischemic brain tissue that has just enough to communicte and function. The life expectancy of the penumbrais short. Although the penumbra is an elegant concept, in practice, it has been a difficult one to exploit. Up to now, a lot of research worker have tried to develop the method to make a accurate diagnosis. and then we know that PET and Xenon CT is available for the diagnosis for the ischemic penumbra. But those are not perfect to diagnose of penumbra. The case in my case report was confirmed as ischemic penumbra with CT. I know that CT is not prefect to diagnose penumbra, but I just want to raise the interest in penumbra of oriental medicine researcher and my report will be benificial to the penumbra researcher.

  • PDF

새로운 뇌 위축 동물 모델과 그 모델에서의 고려인삼의 보호 효과 (Novel animal model for brain atrophy and protective effects of Korean ginseng)

  • 김명규;이세나;김현미;정주호;임강현
    • 대한본초학회지
    • /
    • 제21권4호
    • /
    • pp.197-205
    • /
    • 2006
  • Objectives: Anti-oxidants are known to prevent neuronal diseases with pathological and physiological changes such as the brain atrophy and cognitive impairment. This study was designed to investigate the protective effects of Korean ginseng on the oxidative stress induced pathologic changes, and develop new animal model for the brain atrophy. Korean ginseng has anti-oxidant, anti-aging, and protective effects on the brain ischemia. Methods : The intracerebroventricular (ICV) hydrogen peroxide ($H_2O_2$) injection into mice was conducted to generate oxidative stress. Results : The ICV $H_2O_2$ (1 M, $5\;{\mu}l$ injection did not induce either convulsion or death in the acute phase. At the end of second week, cognitive impairment and pathologic change of the brain were observed. The massive brain atrophy was found in the $H_2O_2-injected$ mice, especially in the hippocampus and thalamus. Treatment with Korean ginseng showed a protective effect against the brain atrophy. The $H_2O_2$ injected mice revealed cognitive impairment in the passive avoidance test, and Korean ginseng alleviated cognitive impairment. Conclusion : The results indicate that Korean ginseng has a protective effect on the oxidative stress-induced neuronal damages.

  • PDF

자연발생 고혈압 흰쥐와 정상흰쥐 데서 타우린의 체내동태 및 뇌투과성 (Pharmacokinetics and Blood-Brain Barrier Permeability of Taurine in Spontaneously Hypertensive Rats and Normotensive Rats)

  • 강영숙;임지현;김안근
    • Biomolecules & Therapeutics
    • /
    • 제8권2호
    • /
    • pp.194-198
    • /
    • 2000
  • Taurine, 2-aminoethanesulfonic acid is widely distributed in animal tissues and has a variety of bio-logical activities. A recent worldwide study demonstrated beneficial effects of taurine on aging and age-associated disorders. In general, taurine levels in the brain decease when an animal is subjected to pathologic conditions such as ischemia-anoxia and seizure. But the taurine levles tend to increase in the brain in hypertensive state. In the present study, the blood-brain barrier (BBB) transport of [$^3$H]taurine was compared between spontaneously hypertensive rats (SHR) and normotensive Sprague-Dawley rats (SD) using intravenous injection technique in vivo. We also obtained pharmacokinetic parameters of plasma volume maker, [$^{14}$ C] sucrose and [$^3$H]taurine after inject to rats simulatenously. BBB permeability surface area product (PS) value of [$^3$H]taurine in SHR (16$\pm$2.9$\times$10$^{-3}$ ml/min/g) was significantly higher than that in SD (7.4$\pm$0.8$\times$10$^{-3}$ ml/min/g). There is also significant difference for brain uptake of [$^3$H]taurine between SHR (0.195$\pm$0.031%ID/g) and SD (0.058$\pm$0.003% ID/g). This is due to difference of area under the plasma concentration-time curve (AUC) and that of total clearance (Class) between SHR and SD. No significant difference was indicated from other organ uptakes such as lung, heart, liver SHR and SD. But also kidney uptake was much higher in SHR. In conclusion, [$^3$H]taurine in plasma was slowly eliminated in SHR than in SD and uptake of [$^3$H]taurine in SHR is much higher than that of SD. This results suggest increased taurine level in the brain in hypertension state have an any effect on the brain uptake of taurine.

  • PDF

Estrogen Mediates Ischemic Damage and the Migration of Human Umbilical Cord Blood Cells

  • Kim, Jee-Yun;Yu, Seong-Jin;Kim, Do-Rim;Youm, Mi-Young;Lee, Chae-Kwan;Kang, Sung-Goo
    • 한국발생생물학회:학술대회논문집
    • /
    • 한국발생생물학회 2003년도 제3회 국제심포지움 및 학술대회
    • /
    • pp.71-71
    • /
    • 2003
  • Human umbilical cord blood cells(HUCBC) are rich in mesenchymal progenitor cells, endothelial cell precursors and hematopoietic cells. HUCBC have been used as a source of transplantable stem and progenitor cells. However, little is known about survival and development of HUCBC transplantation in the CNS. Estrogen has a neuroprotective potential against oxidative stress-induced cell death so has an effect on reducing infarct size of ischemic brain. We investigated the potential use of HUCBC as donor cells and tested whether estrogen mediates intravenously infused HUCBC enter and survive in ischemic brain. PKH26 labeled mononuclear fraction of HUCBC were injected into the tail vein of ischemic OVX rat brain with or without $17\beta$-estradiol valerate(EV). Under fluorescence microscopy, labeled cells were observed in the brain section. Significantly more cells were found in the ischemic brain than in the non-ischemic brain. HUCBC transplanted into ischemic brain could migrate and survive. Some of cells have shown neuronal like cells in hippocampus, striatum and cortex tissues. These result suggest that estrogen reduces ischemic damage and increases the migration of human umbilical cord blood cells. This Study was supported by the Korea Science and Engineering Foundation(KOSEF) though the Biohealth Products Research Center(BPRC), Inje University, Korea.

  • PDF

주산기 뇌손상의 신경병리적 기전 (Neuropathological Mechanisms of Perinatal Brain Injury)

  • 송주영;김진상
    • The Journal of Korean Physical Therapy
    • /
    • 제15권4호
    • /
    • pp.199-207
    • /
    • 2003
  • 신생아의 정상적인 발달을 저해하고 조기 사망의 주된 원인이 되고 있는 주산기 뇌손상에 관한 신경병리적 기전을 살펴보고자 하였다. 발달하고 있는 과정에서의 주산기 뇌손상은 주로 저산소성-허혈성 뇌손상과 출혈성 뇌손상에 의한 경우가 많다. 저산소성-허혈성 뇌손상과 관련하여 에너지 부전, 세포흥분독성, 미성숙 백질의 선택적 취약성을 고려해 볼 수 있다. 첫번째, 세포호흡에 관여하는 미토콘드리아의 손상과 관련하여 즉각적인 병리와 함께 지연된 양상의 손상을 보인다. 미토콘드리아의 호흡률이 감소하고 칼슘이온의 농도가 상승하여 세포 괴사 및 세포사멸 과정이 진행된다. 두번째, 흥분성 아미노산과 관련하여 미성숙한 뇌에는 NMDA 수용기-채널 복합체의 기능이 매우 풍부하고, phosphoinositide 가수분해가 높아서 흥분독성에 상당히 취약하다. 세 번째, 수초 형성에 중요한 역할을 하는 희돌기교세포가 주산기 뇌손상 특히, 저산소성-허혈성 손상에 취약하다. 희돌기교세포는 글루타메이트에 의한 자유유리기과 사이토카인 손상에 취약하다. 뇌출혈과 관련하여, 미성숙한 뇌는 뇌실 주위에 혈관층이 풍부하나 매우 약한 상태로 재관류 혹은 혈류의 증가로 인해 쉽게 파열된다. 특히 32주 이내인 경우 이러한 손상으로 인해 뇌실주위 백질연화증이 초래된다.

  • PDF

가미치첨탕이 고혈압 및 뇌손상에 미치는 효과 (Protective Effects of Gamiheechum-tang(Jiaweixiqian-tang) on Hypertension and Brain Damage)

  • 유종삼;김동희;박종오;남궁욱;홍석
    • 대한한의학회지
    • /
    • 제24권3호
    • /
    • pp.72-83
    • /
    • 2003
  • Objective : The goal of the present study was to investigate the protective effect of Gamiheechum-tang (Jiaweixiqian-tang; GHCT) on brain tissue damage from chemical or ischemic insults. Methods : Levels of cultured cortical neuron death caused by toxic chemicals were measured by LDH release assay. Neuroprotective effects of GHCT on brain tissues were examined in vivo by ischemic model of middle cerebral artery (MCA) occlusion. Results : Animal groups treated with GBCT showed significantly decreased hypertension, and reduced levels of aldosterone, dopamine, and epinephrine in the plasma. GHCT treatments ($l0-200\mu\textrm{g}/ml$) significantly decreased cultured cortical neuron death mediated by AMPA, kainate, BSO, or Fe2+ when measured by LDH release assay. Yet, cell death mediated by NMDA was effectively protected by GHCT at the highest concentration examined ($200\mu\textrm{g}/ml$). In the in vivo experiment examining brain damage by MCA occlusion, affected brain areas by ischemic damage and edema were significantly less in animal groups administered with GHCT compared to the non-treated control group. Neurological examinations of forelimbs and hindlimbs showed that GHCT treatment improved animals' recovery from ischemic injury. Moreover, the extent of injury in cortical and hippocampal pyramidal neurons in ischemic rats was much reduced by GHCT, whose morphological features were similarly observed in non-ischemic animals. Conclusion : The present data suggest that GBCT may play an important role in protecting brain tissues from chemical or ischemic injuries.

  • PDF