• Title/Summary/Keyword: Brain ischemia

Search Result 403, Processing Time 0.026 seconds

Neuroprotective Effects of Scrophulariae Radix on Cerebral Ischemia in Mongolian Gerbils (Mongolian gerbil의 뇌허혈에 대한 현삼의 신경보호효과)

  • Lee, Jun-Hwan;Song, Mi-Yeon;Lee, Jong-Soo;Kim, Sung-Su;Shin, Hyun-Dae;Chung, Seok-Hee
    • Journal of Korean Medicine Rehabilitation
    • /
    • v.18 no.4
    • /
    • pp.1-11
    • /
    • 2008
  • Objectives : Cerebral ischemia resulting from transient or permanent occlusion of cerebral arteries leads to neuronal cell death and eventually causes neurological impairments. Scrophulariae radix is the roots of Scrophularia buergeria. In the present study, we investigated the effects of the aqueous extract of Scrophulariae radix on apoptotic cell death in the hippocampal dentate gyrus following transient global ischemia in gerbils. Methods : For this study, step-down avoidance task, terminal deoxynucleotidyl transferase-mediated dUTP nick end labeling (TUNEL) assay, and immunohistochemistry for caspase-3 were performed. Results : The present results showed that apoptotic cell death in the hippocampal dentate gyrus was significantly increased following transient global ischemia in gerbils. Treatment with the aqueous extract of Scrophulariae radix suppressed the ischemia-induced apoptosis in the dentate gyrus and thus facilitated the recovery of short-term memory impairment induced by ischemic cerebral injury. Conclusions : Here in this study, we have shown that Scrophulariae radix has a positive effect on-and possesses protective qualities against ischemia-induced apoptotic neuronal cell death, and it can be used for the treatment of ischemic brain diseases.

A Simple Method for Predicting Hippocampal Neurodegeneration in a Mouse Model of Transient Global Forebrain Ischemia

  • Cho, Kyung-Ok;Kim, Seul-Ki;Cho, Young-Jin;Sung, Ki-Wug;Kim, Seong Yun
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.10 no.4
    • /
    • pp.167-172
    • /
    • 2006
  • In the present study, we developed a simple method to predict the neuronal cell death in the mouse hippocampus and striatum following transient global forebrain ischemia by evaluating both cerebral blood flow and the plasticity of the posterior communicating artery (PcomA). Male C57BL/6 mice were anesthetized with halothane and subjected to bilateral occlusion of the common carotid artery (BCCAO) for 30 min. The regional cerebral blood flow (rCBF) was measured by laser Doppler flowmetry. The plasticity of PcomA was visualized by intravascular perfusion of India ink solution. When animals had the residual cortical microperfusion less than 15% as well as the smaller PcomA whose diameter was less than one third compared with that of basilar artery, neuronal damage in the hippocampal subfields including CA1, CA2, and CA4, and in the striatum was consistently observed. Especially, when mice met these two criteria, marked neuronal damage was observed in CA2 subfield of the hippocampus. In contrast, after transient BCCAO, neuronal damage was consistently produced in the striatum, dependent more on the degree of rCBF reduction than on the plasticity of PcomA. The present study provided simple and highly reproducible criteria to induce the neuronal cell death in the vulnerable mice brain areas including the hippocampus and striatum after transient global forebrain ischemia.

Evaluation of the role of ischemia modified albumin in neonatal hypoxic-ischemic encephalopathy

  • Talat, Mohamed A.;Saleh, Rabab M.;Shehab, Mohammed M.;Khalifa, Naglaa A.;Sakr, Maha Mahmoud Hamed;Elmesalamy, Walaa M.
    • Clinical and Experimental Pediatrics
    • /
    • v.63 no.8
    • /
    • pp.329-334
    • /
    • 2020
  • Background: Birth asphyxia is a leading cause of neonatal mortality. Ischemia-modified albumin (IMA) levels may have a predictive role in the identification and prevention of hypoxic disorders, as they increase in cases of ischemia of the liver, heart, brain, bowel, and kidney. Purpose: This study aimed to assess the value of IMA levels as a diagnostic marker for neonatal hypoxic-ischemic encephalopathy (HIE). Methods: Sixty newborns who fulfilled 3 or more of the clinical and biochemical criteria and developed HIE as defined by Levene staging were included in our study as the asphyxia group. Neonates with congenital malformation, systemic infection, intrauterine growth retardation, low-birth weight, cardiac or hemolytic disease, family history of neurological diseases, congenital or perinatal infections, preeclampsia, diabetes, and renal diseases were excluded from the study. Sixty healthy neonates matched for gestational age and with no maternal history of illness, established respiration at birth, and an Apgar score ≥7 at 1 and 5 minutes were included as the control group. IMA was determined by double-antibody enzyme-linked immunosorbent assay of a cord blood sample collected within 30 minutes after birth. Results: Cord blood IMA levels were higher in asphyxiated newborns than in controls (250.83±36.07 pmol/mL vs. 120.24±38.9 pmol/mL). Comparison of IMA levels by HIE stage revealed a highly significant difference among them (207.3±26.65, 259.28±11.68, 294.99±4.41 pmol/mL for mild, moderate, and severe, respectively). At a cutoff of 197.6 pmol/mL, the sensitivity was 84.5%, specificity was 86%, positive predictive value was 82.8%, negative predictive value was 88.3%, and area under the curve was 0.963 (P<0.001). Conclusion: IMA levels can be a reliable marker for the early diagnosis of neonatal HIE and can be a predictor of injury severity.

Neuroprotective Effect of Citri Pericarpium On Transient Global Ischemia in Gerbils

  • Kim Jiae;Jung Hyuk-Sang;Won Ran;Park Ji-Ho;Kang Chul hun;Sohn Nak-Won
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.16 no.3
    • /
    • pp.594-601
    • /
    • 2002
  • The current study was carried out to evaluate neuroprotective effects of Citri Pericarpium after transient global ischemia in gerbils. Male Mongolian gerbils weighing 60-80g were anesthetized with 2% isoflurane mixed with 30% oxygen and 70 % nitrogen. Bilateral common carotid arteries were occluded for 5 minute with microaneurysm dips. On 3 or 7 days after ischemic surgery, the gerbils were sacrificed. The brain were removed, embedded in paraffin and sectioned at 8㎛-thickness. Gerbils that received ischemic insult for 5 min showed extensive neuronal damage in the hippocampal CA1 region, and the number of viable neuronal cell was 51.0±2.5/mm, 32.2% of normal group at 7 days after ischemic surgery. In animals that underwent the extract of Citri Pericarpium treatment, the number of viable neuronal cell were significantly better preserved at 110.58±3.58/mm, 72.0% of normal group than those of ischemic group (P<0.01). In the immunohistochemistry of Bax and Bcl-2, the Citri Pericarpium treated group down-regulated the expression of Bax protein at 72hr after transient global ischemia. In contrast, Bcl-2 protein level was not changed. The appearance in TUNEL assay is similar to the pattern of Bax protein. The water extract of Citri Pericarpium significantly reduced the number of TUNEL-positive CA1 pyramidal neurons at 72hr. The results suggest that Citri Pericarpium has potential neuroprotective effects in the transient global ischemia and the increase in the ratio of Bcl-2 to Bax may contribute to the anti-apoptotic effect of Citri Pericarpium.

Arm Cortex S3C2440 Microcontroller Application for Transcranial Magnetic Stimulation's Pulse Forming on Bax Reactive Cells and Cell Death in Ischemia Induced Rats

  • Tac, Han-Ho;Kim, Whi-Young
    • Journal of Magnetics
    • /
    • v.21 no.2
    • /
    • pp.266-272
    • /
    • 2016
  • Transcranial magnetic stimulation devices has been used mainly for diagnostic purposes by measuring the functions of the nervous system rather than for treatment purposes, and has a problem of considerable energy fluctuations per repeated pulse. The majority of strokes are caused by ischemia and result in brain tissue damage, leading to problems of the central nervous system including hemiparesis, dysfunction of language and consciousness, and dysfunction of perception. Control is difficult and the size is large due to the difficulty of digitalizing the energy stored in a capacitor, and there are many heavy devices. In addition, there are many constraints when it is used for a range of purposes such as head and neck diagnosis, treatment and rehabilitation of nerve palsy, muscle strengthening, treatment of urinary incontinence etc. Output stabilization and minimization of the energy variation rate are required as the level of the transcranial magnetic stimulation device is dramatically improved and the demand for therapeutic purposes increases. This study developed a compact, low cost transcranial magnetic stimulation device with minimal energy variation of a high repeated pulse and output stabilization using a real time capacitor charge discharge voltage. Ischemia was induced in male SD rats by closing off the common carotid artery for 5 minutes, after which the blood was re-perfused. In the cerebrum, the number of PARP reactive cells after 24 hours significantly decreased (p < 0.05) in the TMS group compared to the GI group. As a result, TMS showed the greatest effect on necrosis-related PARP immuno-reactive cells 24 hours after ischemia, indicating necrosis inhibition, blocking of neural cell death, and protection of neural cells.

Effects of Jagamcho-tang on the C6 Glial Cell Injured by LPS Combined PMA (자감초탕(炙甘草湯)이 LPS와 PMA에 의해 손상된 C6 glial 세포에 미치는 영향)

  • Cho, Nam-Su;Rhyu, Jun-Ki;Lee, In;Shin, Sun-Ho;Moon, Byung-Soon;Na, Young-Hoon
    • The Journal of Internal Korean Medicine
    • /
    • v.21 no.3
    • /
    • pp.467-475
    • /
    • 2000
  • The water extracts of Jagamcho-tang has been used for treatment of arrhythmia and palpitation in oriental traditional medicine. Brain is provided with blood flow by heart. Jagamcho-tang has been studied on ischemia and infarction in heart. However, little is known about the mechanism by which the water extracts of Jagamcho-tang rescues brain cells from ischemic damages. To elucidate the protective mechanism on ischemic induced cytotoxicity, the effects of Jagamcho-tang on ischemia induced cytotoxicity and generation of nitric oxide(NO) are investigated in C6 glioma cells. Jagamcho-tang induce NO in a dose dependent manner up to 2.5mg/ml in C6 glioma cells. The pretreatment of Jagamcho-tang protect sodium nitroprusside(SNP) (2mM) induced cytotoxicity. This effect of Jagamcho-tang is mimicked by treatment by pretreatment of SNP($100{\mu}M$), an exogenous NO donor. NG-monomethyl-L-arginine($N^{G}MMA$), a specific inhibitor of nitric oxide synthase (NOS), significantly blocks the protective effects of Jagamcho-tang on cell toxicity by ischemia. In addition, lipopolysaccharide(LPS) and phorhol 12 myristate 13-acetate(PMA) treatment for 72h in C6 glial cells markedly induce NO, but treatment of the cells with the water extracts of Jagamcho-tang decrease nitrite formation in a dose dependent manner. In addition, LPS and PMA treatment for 72h induce severe cell death and LDH release into medium in C6 glial cells. However treatment of the cells with the water extracts of Jagamcho-tang dose not induce significant changes compare to control cells. Furthermore, the protective effects of the water extracts of Jagamcho-tang is mimicked by treatment of $N^{G}MMA$. Taken together, I suggest that the protective effects of the water extracts of Jagamcho-tang against ischemic brain damages may be mediated by regulation of iNOS during ischemic condition.

  • PDF

The Inhibitive Effects of Yukgunja-tang on the Cerebral Ischemia (대군자탕이 뇌허혈에 미치는 억제 효과)

  • Kim Hee Seong;Lee Sang Lock;Jeong Hyun Woo
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.18 no.2
    • /
    • pp.419-426
    • /
    • 2004
  • This experimental study was designed to investigate the effects of Yukgunja-tang(YGJT) on the inhibition of cerebral ischemia in rats. And We measured regional cerebral blood f1ow(rCBF) and pial arterial diameter(PAD) in cerebral ischemic rats, and cytokines production in serum Of cerebral ischemic rats. The results were as follows; Both rCBF and PAD were significantly and stably increased by YGJT(10 mg/kg, i.p.) during the period of cerebral reperfusion, which contrasted with the findings of rapid and marked increase in control group. In cytokine production of serum by drawing from femoral arterial blood after middle cerebral arterial occlusion(MCAO) 1 hr, IL-1β and TGF-β production of sample group were similar to that of control group, but sample group was decreased TNF-α production compared with control group, and was significantly increased IL-10 production in compared with control group. In cytokine production of serum by drawing from femoral arterial blood after reperfusion 1 hr, sample group was significantly decreased IL-1β and TNF-α production compared with control group, but TGF-β production of sample group was similar to that of control group, and sample group was significantly increased IL-10 production compared with control group. In cytokine production of serum by drawing from femoral arterial blood after reperfusion 4 hrs, sample group was significantly decreased IL-1β production compared with control group, and sample group was decreased TNF-α production in compared with control group, but TGF-β production of sample group was similar to that of control group, and sample group was increased IL-10 production compared with control group. This results were suggested that YGJT has inhibitive effect on the brain damage by inhibited IL-1β production and TNF-α production, but accelerated IL-10 production. We thought that YGJT should have an anti-ischemic effect through the improvement of cerebral hemodynamics and inhibitive effect on the brain damage.

Yangkyuksanhwa-Tang Attenuates Ischemic Brain Injury in a Focal Photothrombosis Stroke Model (뇌허혈 마우스모델에서 양격산화탕이 뇌 손상 완화에 미치는 효과)

  • Han, Do-Kyung;Pak, Malk-Eun;Kwon, Ok-Sun;Choi, Byung-Tae
    • Journal of Life Science
    • /
    • v.29 no.11
    • /
    • pp.1258-1266
    • /
    • 2019
  • Yangkyuksanhwa-Tang (YKSH), consisting of nine different herbs, is commonly used in Soyangin-type individuals with stroke, based on the Sasang Constitution Theory in Korea. However, no evidence has yet confirmed a beneficial effect of YKSH in ischemic stroke treatment. In this study, we investigated the effects of YKSH on ischemic brain injury in a mouse model of cerebral ischemia. Focal cerebral ischemia in mice was induced by photothrombosis, and behavioral recovery was evaluated. Infarct volume, inflammation, and newly generated cells were evaluated by histology and immunochemistry. YKSH treatment resulted in a significant recovery from the motor impairments induced by focal cerebral ischemia, as determined with wire grip and rotarod tests. YKSH treatment also decreased the infarct volume and the number of cells positive for tumor necrosis factor-${\alpha}$ and myeloperoxidase when compared with a vehicle-treated control group. By contrast, YKSH treatment considerably increased the number of cells positive for glial fibrillary acidic protein and ionized calcium-binding adapter molecule 1, as well as the number of cells doubly positive for Ki67/doublecortin when compared with the vehicle-treated group. These results suggest that YKSH treatment attenuated the infarct size by anti-inflammatory action, astrocyte and microglia activation, and neuronal proliferation, thereby facilitating neurofunctional recovery from a cerebral ischemic assault. YKSH could therefore be a potential treatment for neurofunctional restoration of the injured brains of patients with stroke.

Neuroprotective Effect of the Roots of Polygonum Cuspidatum on Transient Focal Cerebral Ischemia in Rats (호장근의 일시적 국소뇌허혈 흰쥐 모델에 대한 신경보호효과)

  • Kim, Jin-Mo;Cha, Dong-Suk;Jeon, So-Ra;Jeon, Hoon;Lim, Jong-Pil;Choi, Hoon;Lee, Ki-Jin;Kang, Min-Seok;Na, Ho-Jeong;Kim, Mi-Yeon;Leem, Kang-Hyun;Kim, Ho-Cheol;Bu, Young-Min
    • The Korea Journal of Herbology
    • /
    • v.23 no.2
    • /
    • pp.225-233
    • /
    • 2008
  • Objectives : The purpose of the present study was to development of neuroprotective antioxidant agents. For the purpose, we investigated the neuroprotective effect of anti oxidant herb, the root of Polygonum cuspidatum on transient focal cerebral ischemia in rats. Methods : The roots of Polygonum cuspidatum were extracted by 85% MeOH (PCE). Radical scavenging effects were investigated using DPPH assay and TBARs (Thiobarbituric acid reaction substance) assay in brian homogenates. Neuroprotective effect was investigated using transient focal cerebral ischemia rat model (2 h of ischemia, 22 h of reperfusion) by behavioral test and measurement of brain damage using 2, 3, 5-triphenyltetrazolium chloride staining. Results : PCE showed potent and dose dependent radical scavenging effects in DPPH and TBARs assay. Oral administration of PCE reduced brain infarct volume by 29.7% and improved the sensory motor functional deficit by 29% compared with vehicle treated group. Conclusions : PCE showed radical scavenging effects and neuroprotective effect on stroke rat model. Therefore, Polygonum cuspidatum could be a candidate for the development of neuroprotective-antioxidant agents.

  • PDF

Role of a Burr Hole and Calvarial Bone Marrow-Derived Stem Cells in the Ischemic Rat Brain : A Possible Mechanism for the Efficacy of Multiple Burr Hole Surgery in Moyamoya Disease

  • Nam, Taek-kyun;Park, Seung-won;Park, Yong-sook;Kwon, Jeong-taik;Min, Byung-kook;Hwang, Sung-nam
    • Journal of Korean Neurosurgical Society
    • /
    • v.58 no.3
    • /
    • pp.167-174
    • /
    • 2015
  • Objective : This study investigates the role of a burr hole and calvarial bone marrow-derived stem cells (BMSCs) in a transient ischemic brain injury model in the rat and postulates a possible mechanism for the efficacy of multiple cranial burr hole (MCBH) surgery in moyamoya disease (MMD). Methods : Twenty Sprague-Dawley rats (250 g, male) were divided into four groups : normal control group (n=5), burr hole group (n=5), ischemia group (n=5), and ischemia+burr hole group (n=5). Focal ischemia was induced by the transient middle cerebral artery occlusion (MCAO). At one week after the ischemic injury, a 2 mm-sized cranial burr hole with small cortical incision was made on the ipsilateral (left) parietal area. Bromodeoxyuridine (BrdU, 50 mg/kg) was injected intraperitoneally, 2 times a day for 6 days after the burr hole trephination. At one week after the burr hole trephination, brains were harvested. Immunohistochemical stainings for BrdU, CD34, VEGF, and Doublecortin and Nestin were done. Results : In the ischemia+burr hole group, BrdU (+), CD34 (+), and Doublecortin (+) cells were found in the cortical incision site below the burr hole. A number of cells with Nestin (+) or VEGF (+) were found in the cerebral parenchyma around the cortical incision site. In the other groups, BrdU (+), CD34 (+), Doublecortin (+), and Nestin (+) cells were not detected in the corresponding area. These findings suggest that BrdU (+) and CD34 (+) cells are bone marrow-derived stem cells, which may be derived from the calvarial bone marrow through the burr hole. The existence of CD34 (+) and VEGF (+) cells indicates increased angiogenesis, while the existence of Doublecortin (+), Nestin (+) cells indicates increased neurogenesis. Conclusion : Based on these findings, the BMSCs through burr holes seem to play an important role for the therapeutic effect of the MCBH surgery in MMD.