• Title/Summary/Keyword: Brain activation

Search Result 725, Processing Time 0.027 seconds

Metabolic Changes on Occipital Cortex during Visual Stimulation with Functional MR Imaging and H MR Spectroscopy (기능적 자기공명영상법과 양성자 가지공명분광법을 이용한 시각자극에 의한 후두염 피질의 대사물질 변화)

  • Kim, Tae;Suh, Tae-Suk;Choe, Bo-Young;Kim, Sung-Eun;Lee, Heung-Kyu;Shinn, Kyung-Sub
    • Investigative Magnetic Resonance Imaging
    • /
    • v.3 no.1
    • /
    • pp.47-52
    • /
    • 1999
  • Purpose : The purpose of this study was aimed to evaluate the BOLD(blood oxygen level dependent) contrast fMRI(functional MR imaging) in the occipital lobe and to compare with the metabolic changes based on H MRS (MR spectroscopy) and MRSI (MR spectroscopic imaging) before and after visual stimulation Materials and Methods : Healthy human volunteers (eight males and two females with 24-30 year age) participated in this study. All of the BOLD fMRI were acquired on a 1.5T MR with EPI during supervised visual stimulation in the occipital lobe. The red flicker with 8Hz was used for visual stimulation. After imaging acquisition, the MR images were transferred into unix workstation and processed with acquired from the same location based on the activation map. MRSI (magnetic resonance spectroscopic imaging) was also acquired to analyze the lactate changes before and after stimulation. Results : The activation maps were successfully produced by BOLD effect due to visual stimulation. NAA (N-acetyle aspartate)/Cr (creatine) ratio varied only from $1.79{\pm}0.28{\;}to{\;}1.88{\pm}0.20$ in activation area before and after stimulation. However, the signal intensity of lactate was elevated $9.48{\pm}4.38$ times higher than before activation. Lactate metabolite images were consistent with the activation maps. Conclusion : The BOLD contrast fMRI is enough sensitive to detect the activated area in human brain during the visual stimulation. Lactate metabolite map presents the evidence of lactate elevation on the same area of activation.

  • PDF

Functional MRI ofThe Supplementary Motor Area in Hand Motor Task: Comparison Study with The Primary Motor Area (수지운동자극을 사용한 부운동중추의 기능적 MR연구: 일차운동중추와의 비교)

  • 이호규;김진서;최충곤;임태환
    • Investigative Magnetic Resonance Imaging
    • /
    • v.1 no.1
    • /
    • pp.103-107
    • /
    • 1997
  • Purpose: To investigate the localization and functional lateralization of the supplementary motor area (SMA) in motor activation tests in comparison to that of the primary motor area. Materials and Methods: Seven healthy volunteers obtained echoplanar imaging blood oxygen level dependent technique. This study was carried on 1.5T Siemens Magnetom Vision system with the standard head coil. Parameters of EPI were followed as; TR/TE : 1.0/66.0msec, flip angle: $90^{\circ}$, field of view: $22cm{\times}22cm,{\;}matrix:{\;}128{\times}128$, slice number/slice thickness/gap: 1O/4mm/0.8mm with fat suppression technique. Motor task as finger opposition in each hand consisted of 3 sets of alternative rest and activation periods. Postprocessing were done on Stimulate 5.0 by using cross-correlation statistics. To compare the functional lateralization of the SMA in the right and left hand tests, each examination was evaluated for the percent change of signal intensity and the number of activated voxels both in the SMA and in the pri¬mary motor area. Hemispheric asymmetry was defined as difference of summation of the activted voxels between each hemisphere. Results: Percent change of signal intensity in the SMA (2.49 -3.06%) is lower than that of primary motor area(4.4 -7.23%). Percent change of signal intensity including activated voxels were observed almost equally in the right and left SMA. As for summation of activated voxels, primary motor area had significant difference between each hemisphere but not did the SMA. Conclusion: Preferred contralateral dominant hemisphere and hemispheric asymmetry were detected in the primary motor area but not in the SMA.

  • PDF

The Change of Cortical Activity Induced by Visual Disgust Stimulus (시각혐오자극으로 유발된 대뇌 피질 활성도 변화)

  • Jung, Wook;Park, Doo-Heum;Yu, Jae-Hak;Ryu, Seung-Ho;Ha, Ji-Hyeon;Shin, Byoung-Hak
    • Sleep Medicine and Psychophysiology
    • /
    • v.20 no.2
    • /
    • pp.75-81
    • /
    • 2013
  • Objectives: There are a lot of studies that analyze the interaction between the emotion of disgust and the functional brain images using fMRI and PET. But studies using sLORETA (standardized low resolution brain electromagnetic tomography) almost do not exist. The aim of this research is to explore the relationship of the emotion of disgust and the cortical activation using sLORETA analysis. Methods: Forty five healthy young adults ($27.1{\pm}2.6$ years) participated in the study. While they were watching 4 neutral images and 4 disgusting images associated with mutilation selected from the international affective picture system (IAPS), participants' EEGs were taken for 30 seconds per one picture. Through these obtained EEG data, sLORETA analysis was performed to compare EEGs associated with neutral and negative images. Results: During looking for visual disgusting stimulus, all participants reported unpleasantness, arousal and stress. In sLORETA analysis, the decrease of current density in theta wave was shown at left frontal superior gyrus (BA10) and middle gyrus (BA10, 11). This voxel cluster consists of a total of 11 voxels and the threshold of t value indicating statistically significant decreases in the current density (p<0.05) was -1.984. There were no differences between male and female in the degree of being disgusted by the stimuli. Conclusion: This finding may suggest that the activation of dorsolateral prefrontal cortex might be associated with regulating disgust emotion.

The Role of G protein in the Activation of Phospholipase C from Bovine Brain (소의 뇌조직 Phospholipase C의 활성화에 미치는 G-단백질의 역할)

  • Kim, Jung-Hye;Lee, Dong-Jin;Byun, Yeung-Ju
    • Journal of Yeungnam Medical Science
    • /
    • v.9 no.2
    • /
    • pp.288-301
    • /
    • 1992
  • The objective of the present study was to identify the characteristics of phospholipase C (PLC) isozymes purified from bovine brain and to investigate their interrelationship with G protein. The purified PLC isozymes ${\beta}$, ${\gamma}$ and ${\delta}$ were obtained and the characteristics of PLC activity on various concentrations of free $Ca^{2+}$ were observed. The activity of PLC was increased with increasing $Ca^{2+}$ concentration and the activity PLC ${\delta}$ was increased higher in the presence of phosphatidyl choline(PC) than in the abscence of PC. For vesicle formation as the structure of cell membrane, cholic acid and deoxycholic acid as detergent on phosphatidylinositol bisphosphate($PIP_2$) substrate containing PC were used, and then the activity of PLC isozymes were increased with increasing concentration of cholate, from 0.2% to 1% and were increased slightly in deoxycholate. In the $PIP_2$ containing phospholipid and glycolipid as brain extract, the activity of PLC isozymes were checked in 0.2%-1% cholic acid. The activities of PLC isoyzmes were continuously increased up to 1% cholic acid. The quantitation of PLC isozymes from several bovine organs by radioimmunoassay was made. Brain was the most sufficient organ in terms of amount of PLC ${\beta}$and ${\delta}$. A large amount of PLC ${\delta}$ was existed in adrenal gland. The binding capacity of GTPrS and G protein was observed and other observations of the binding effect of GTPrS-G protein and PLC monoclonal Ab-Protein A from tissue homogenate with PLC were made. From the observation the binding capacity was revealed the range of 0.11%-1.49%. The effects of each type of G protein on the percent activity of purified PLC isozymes were observed. From the observation, activities of isozymes were increased in $Go{\alpha}$ & Gmix, and the activities of PLC ${\beta}$ and ${\delta}$ were increased in $G{\beta}{\gamma}$ and $Gi{\alpha}$. Activities of PLC ${\beta}$ and ${\gamma}$ were decreased in $Gt{\alpha}$ but PLC ${\delta}$ increased.

  • PDF

Observations of Oxygen Administration Effects on Visuospatial Cognitive Performance using Time Course Data Analysis of fMRI (뇌기능 자기공명영상의 시계열 신호 분석에 의한 공간인지과제 수행시 산소 공급의 효과 관찰)

  • Sohn Jin-Hun;You Ji-Hye;Eom Jin-Sup;Lee Soo-Yeol;Chung Soon-Cheol
    • Investigative Magnetic Resonance Imaging
    • /
    • v.9 no.1
    • /
    • pp.9-15
    • /
    • 2005
  • Purpose : This study attempted to investigate the effects of supply of highly concentrated $(30\%)$ oxygen on human ability of visuospatial cognition using time course data analysis of functional Magnetic Resonance Imaging (fMRI). Materials and Methods : To select an item set in the visuospatial performance test, two questionnaires with similar difficulty were developed through group testing. A group test was administered to 263 college students. Two types of questionnaire containing 20 questions were developed to measure the ability of visuospatial cognition. Eight college students (right-handed male, average age of 23.5 yrs) were examined for fMRI study. The experiment consisted of two runs of the visuospatial cognition testing, one with $21\%$ level of oxygen and the other with $30\%$ oxygen level. Each run consisted of 4 blocks, each containing control and visuospatial items. Functional brain images were taken from 37 MRI using the single-shot EPI method. Using the subtraction procedure, activated areas in the brain during visuospatial tasks were color-coded by t-score. To investigate the time course data in each activated area from brain images, 4 typical regions (cerebellum, occipital lobe, parietal lobe, and frontal lobe) were selected. Results : The average accuracy was $50.63{\pm}8.63$ and $62.50{\pm}9.64$ for $21\%\;and\;30\%$ oxygen respectively, and a statistically significant difference was found in the accuracy between the two types of oxygen (p<0.05). There were more activation areas observed at the cerebellum, occipital lobe, parietal lobe and frontal lobe with $30\%$ oxygen administration. The rate of increase in the cerebellum, occipital lobe and parietal lobe was $17\%$ and that of the frontal lobe, $50\%$. Especially, there were increase of intensity of BOLD signal at the parietal lobe with $30\%$ oxygen administration. The increase rate of the left parietal lobe was $1.4\%$ and that of the right parietal lobe, $1.7\%$. Conclusion : It is concluded that while performing visuospatial tasks, high concentrations of oxygen administration make oxygen administration sufficient, thus making neural network activate more, and the ability to perform visuospatial tasks increase.

  • PDF

Low Frequency Noise Induces Stress Responses in the Rat (흰쥐에서 저주파소음에 의한 스트레스 반응)

  • Choi, Woong-Ki;Lee, Kyu-Sop;Joung, Hye-Young;Lee, Young-Chang;Sohn, Jin-Hun;Lee, Bae-Hwan;Pyun, Kwang-Ho;Shim, In-Sop
    • Science of Emotion and Sensibility
    • /
    • v.10 no.3
    • /
    • pp.411-418
    • /
    • 2007
  • Exposure to low frequency noise(LFN) can lead to vibroacoustic diseases(VADs), which include a systemic disease with lesions in a broad spectrum of organs and a psychiatric condition. It is known that VAD is an established risk factor for the development of many psychological conditions in humans and rodents, including major depression and anxiety disorder. The present study investigated the effects of LFN on neuronal stress responses in the rat brain. The neuronal expression of the proto-oncogene c-fos in the paraventricular nucleus(PVN) of the hypothalamus and tyrosine hydroxylase(TH) in the LC was observed. The immunocytochemical detection of the Fos protein and TH has been used as a marker of neuronal activation in response to stress. In addition, corticosterone concentration was evaluated by using an enzyme-linked immunosorbent assay(ELISA). The LFN groups were exposed to 32.5Hz and 125Hz of noise(4hr/day for 2days). The numbers of c-fos and TH-immunoreactive cells in the PVN and LC were significantly increased in the LFN groups(32.5Hz and 125Hz) compared to the normal group. Corticosterone concentration in plasma was also increased in LFN groups. The present results demonstrated that exposure with LFN produced a pronounced increase in expression of c-Fos and TH in stress-relevant brain areas. These results suggest that the neural characteristics involved in LFN are similar to those activated by typical processive stressors. These results also suggest that the central and peripheral activations by LFN may be related to LFN-related negative behavioral dysfunctions such as VADs.

  • PDF

Physiological Roles of Phospholipase Cγ and Its Mutations in Human Disease (Phospholipase Cγ의 생리적 기능과 질병과 연관된 돌연변이)

  • Jang, Hyun-Jun;Choi, Jang Hyun;Chang, Jong-Soo
    • Journal of Life Science
    • /
    • v.30 no.9
    • /
    • pp.826-833
    • /
    • 2020
  • Phospholipase C gamma (PLCγ) has critical roles in receptor tyrosine kinase- and non-receptor tyrosine kinase-mediated cellular signaling relating to the hydrolysis of phosphatidylinositol 4,5-bisphosphate [PI(4,5)P2] to produce inositol 1,4,5 trisphosphate (IP3) and diacylglycerol (DAG), which promote protein kinase C (PKC) and Ca2+ signaling to their downstream cellular targets. PLCγ has two isozymes called PLCγ1 and PLCγ2, which control cell growth and differentiation. In addition to catalytically active X- and Y-domains, both isotypes contain two Src homology 2 (SH2) domains and an SH3 domain for protein-protein interaction when the cells are activated by ligand stimulation. PLCγ also contains two pleckstrin homology (PH) domains for membrane-associated phosphoinositide binding and protein-protein interactions. While PLCγ1 is widely expressed and appears to regulate intracellular signaling in many tissues, PLCγ2 expression is restricted to cells of hematopoietic systems and seems to play a role in the regulation of immune response. A distinct mechanism for PLCγ activation is linked to an increase in phosphorylation of specific tyrosine residue, Y783. Recent studies have demonstrated that PLCγ mutations are closely related to cancer, immune disease, and brain disorders. Our review focused on the physiological roles of PLCγ by means of its structure and enzyme activity and the pathological functions of PLCγ via mutational analysis obtained from various human diseases and PLCγ knockout mice.

Neuroprotective potential of imatinib in global ischemia-reperfusion-induced cerebral injury: possible role of Janus-activated kinase 2/signal transducer and activator of transcription 3 and connexin 43

  • Wang, Jieying;Bai, Taomin;Wang, Nana;Li, Hongyan;Guo, Xiangyang
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.24 no.1
    • /
    • pp.11-18
    • /
    • 2020
  • The present study was aimed to explore the neuroprotective role of imatinib in global ischemia-reperfusion-induced cerebral injury along with possible mechanisms. Global ischemia was induced in mice by bilateral carotid artery occlusion for 20 min, which was followed by reperfusion for 24 h by restoring the blood flow to the brain. The extent of cerebral injury was assessed after 24 h of global ischemia by measuring the locomotor activity (actophotometer test), motor coordination (inclined beam walking test), neurological severity score, learning and memory (object recognition test) and cerebral infarction (triphenyl tetrazolium chloride stain). Ischemia-reperfusion injury produced significant cerebral infarction, impaired the behavioral parameters and decreased the expression of connexin 43 and phosphorylated signal transducer and activator of transcription 3 (p-STAT3) in the brain. A single dose administration of imatinib (20 and 40 mg/kg) attenuated ischemia-reperfusion-induced behavioral deficits and the extent of cerebral infarction along with the restoration of connexin 43 and p-STAT3 levels. However, administration of AG490, a selective Janus-activated kinase 2 (JAK2)/STAT3 inhibitor, abolished the neuroprotective actions of imatinib and decreased the expression of connexin 43 and p-STAT3. It is concluded that imatinib has the potential of attenuating global ischemia-reperfusion-induced cerebral injury, which may be possibly attributed to activation of JAK2/STAT3 signaling pathway along with the increase in the expression of connexin 43.

A Study for Antistress Effects of Two Aromatic Synergic Blending Oils (아로마 에센셜 오일의 항스트레스효과에대한 연구 - 뇌파 검사를 중심으로-)

  • Choi, Jin-Yong;Oh, Hong-Keun;Chun, Kyum-Ku;Lee, Jun-Suk;Park, Dong-Ki;Choi, Sung-Don;Chun, Tae-Il;Kim, Mi-Kyung;Kim, Suk-Bum
    • Annals of Clinical Neurophysiology
    • /
    • v.2 no.2
    • /
    • pp.70-80
    • /
    • 2000
  • Purpose : This study was performed to evaluate the antistress effects of two aromatic blends being composed of synergic essential oils and also to differentiate its effectiveness between two. Methods : The subject were 20(10 for men, 10 for women) for vital factors and another 20(10 for mem, 10 for women) for serum catecholamine. Vital factors(blood pressure, pulse), electroencephalograpy, psychological tests(SACL, STAI) and serum catecholamine were applied to the subjects. Results : 1. All two aromatic synergic blends revealed no significant differnce of vital factors after inhalation but stable conditions generally by lowering pulse and blood pressure after inhalation. 2. Both blends were significantly valuable in antianxiety and antistress effects statistically. There were no statistically difference between two blends. 3. There were no significant difference in all brain waves after inhalation of two blends but generally stable brain waves were seen in all areas. 4. There were antistress effects of both blends in accordance of decreased serum catecholamines after inhalation of both blends. There were no significantly difference between two blends statistically. Conclusion : Both two aromatic synergic blends reached effective antistress and antianxiety states after inhalation of each blends. There were no significant difference between two blends. Further studies about the effectiveness between the amount of aromatic essential oils and the duration of inhalation should be considered. Also clinical applications of these two aromatic synergic blending oils to develop the aromatic products would be affordable in the future.

  • PDF

A Cancer-specific Promoter for Gene Therapy of Lung Cancer, Protein Regulator of Cytokinesis 1 (PRC1) (폐암의 유전자 치료법을 위한 암특이적인 PRC1 프로모터)

  • Cho, Young-Hwa;Yun, Hye-Jin;Kwon, Hee-Chung;Kim, Hee-Jong;Cho, Sung-Ha;Kang, Bong-Su;Kim, Yeun-Ju;Seol, Won-Gi;Park, Kee-Rang
    • Journal of Life Science
    • /
    • v.18 no.10
    • /
    • pp.1395-1399
    • /
    • 2008
  • We have recently reported the PRC1 promoter as a promoter candidate to control expression of transcriptionally targeted genes for breast cancer gene therapy. We tested whether the PRC1 promoter could be also applied for the lung cancer gene therapy. In the transient transfection assay with naked plasmids containing the luciferase fused to the PRC1 promoter, the promoter showed little activity in the normal lung cell line, MRC5. However, in the lung cancer A549 cells, PRC1 showed approximately 30-fold activation which was similar to the survivin promoter, the gene whose promoter has been already reportedas a candidate for the gene therapy of lung cancer. In viral systems, the PRC1 promoter showed approximately 75% and 66% of transcriptional activity compared to the CMV promoter in the adeno-associated virus (AAV) and the adenovirus (AV) systems, respectively. However, the PRC1 promoter in either AAV or AV showed approximately 20% activity compared to the CMV promoter in the normal lung cells. In addition, human lung tumor xenograft mice showed that the PRC1 promoter activity was as strong as the CMV activity in vivo. Taken together, these results suggested that PRC1 might be a potential promoter candidate for transcriptionally targeted lung cancer gene therapy.