• Title/Summary/Keyword: Brain Tumors

Search Result 380, Processing Time 0.025 seconds

Intraoperative Neurophysiological Monitoring in Cerebello Pontine Angle Tumor

  • Park, Sang-Ku
    • Korean Journal of Clinical Laboratory Science
    • /
    • v.46 no.1
    • /
    • pp.38-45
    • /
    • 2014
  • Intraoperative Neurophysiological Monitoring (INM) inspection has a very important role. While preserving the patient's neurological function be sure to safe surgery, neurological examination should thank. Cerebello pontine angle tumor surgery, especially in the nervous system is more important to the meaning of INM. In cochlear nerve, facial nerve, trigeminal nerve, which are intricate brain surgery, doctors are only human eye and brain to the brain that it is virtually impossible to distinguish the nervous system. They receives a lot of help from INM. In this paper, we examined six kinds broadly. First, the methods of spontaneous EMG and Free-running EMG, which can instantly detect a damage inflicted on a nerve during surgery. Second, methods of triggered EMG and direct nerve electrical stimulation, which directly stimulate a nerve using electricity to distinguish between nerves and brain tumors. Third, the method of knowing a more accurate neurologic status by informing neurological surgeons about Free-running EMG wave forms that are segmetalized into four. Fourth, three ways of knowing when a patient will be awaken from intraoperative anesthesia, which happens due to a weak anesthetic. Fifth, a method of understanding the structures of a brain tumor and a facial nerve as five dividend segments. Sixth, comparisons between cases normal facial nerve recovery and occurrence of a facial nerve paralysis during the postoperative course.

Magnetic Resonance-Guided Focused Ultrasound : Current Status and Future Perspectives in Thermal Ablation and Blood-Brain Barrier Opening

  • Lee, Eun Jung;Fomenko, Anton;Lozano, Andres M.
    • Journal of Korean Neurosurgical Society
    • /
    • v.62 no.1
    • /
    • pp.10-26
    • /
    • 2019
  • Magnetic resonance-guided focused ultrasound (MRgFUS) is an emerging new technology with considerable potential to treat various neurological diseases. With refinement of ultrasound transducer technology and integration with magnetic resonance imaging guidance, transcranial sonication of precise cerebral targets has become a therapeutic option. Intensity is a key determinant of ultrasound effects. High-intensity focused ultrasound can produce targeted lesions via thermal ablation of tissue. MRgFUS-mediated stereotactic ablation is non-invasive, incision-free, and confers immediate therapeutic effects. Since the US Food and Drug Administration approval of MRgFUS in 2016 for unilateral thalamotomy in medication-refractory essential tremor, studies on novel indications such as Parkinson's disease, psychiatric disease, and brain tumors are underway. MRgFUS is also used in the context of blood-brain barrier (BBB) opening at low intensities, in combination with intravenously-administered microbubbles. Preclinical studies show that MRgFUS-mediated BBB opening safely enhances the delivery of targeted chemotherapeutic agents to the brain and improves tumor control as well as survival. In addition, BBB opening has been shown to activate the innate immune system in animal models of Alzheimer's disease. Amyloid plaque clearance and promotion of neurogenesis in these studies suggest that MRgFUS-mediated BBB opening may be a new paradigm for neurodegenerative disease treatment in the future. Here, we review the current status of preclinical and clinical trials of MRgFUS-mediated thermal ablation and BBB opening, described their mechanisms of action, and discuss future prospects.

Impact of Planning Target Volume Margins in Stereotactic Radiosurgery for Brain Metastasis: A Review

  • Emmanuel Fiagbedzi;Francis Hasford;Samuel Nii Tagoe
    • Progress in Medical Physics
    • /
    • v.35 no.1
    • /
    • pp.1-9
    • /
    • 2024
  • Margin inclusion or exclusion remains the most critical and controversial aspect of stereotactic radiosurgery (SRS) for metastatic brain tumors. This review aimed to examine the available literature on the impact of margins in SRS of brain metastasis and to assess the response of some medical physicists on the use of these margins. The Preferred Reporting Items for Systematic Reviews and Meta-Analyses method was used to review articles published in PubMed, Embase, and Science Direct databases from January 2012 to December 2022 using the following keywords: planning target volume, brain metastasis, margin, and stereotactic radiosurgery. A simple survey consisting of five questions was completed by ten medical physicists with experience in SRS treatment planning. The results were analyzed using IBM SPSS Statistics version 26.0. Of the 1,445 articles identified, only 38 articles were chosen. Of these, eight papers were deemed relevant to the focus of this review. These papers showed an increase in the risk of radionecrosis, whereas differences in local control were variable as the margin increased. In the survey, the response rate to whether or not to use margins in SRS, a critical question, was 50%. Margin addition increases the risk of radio necrosis. The local control rate varies among treatment modalities and cannot be generalized. From the survey, no consensus was reached regarding the use of these margins. This calls for further deliberations among professionals directly involved in SRS.

Radiation Therapy of Suprasellar Germ Cell Tumors (뇌하수체상부 배아세포종의 방사선치료 성적)

  • Park Woo Yoon;Choi Doo Ho;Choi Eun Kyung;Kim Il Han;Ha Sung Whan;Park Charn Il
    • Radiation Oncology Journal
    • /
    • v.6 no.2
    • /
    • pp.169-176
    • /
    • 1988
  • A retrospective study was performed on 15 patients with suprasellar germ cell tumors treated by megavoltage external beam irradiation between Feb. 1979 and Dec. 1985. Follow-up period of survivors was 30 to 91 months. Histologic diagnosis was obtained before radiation therapy in 10patients (9 germinomas and 1 mixed). Five patients were treated without histologic verification. In 9 patients with biopsy-proven germinomas radiation therapy was delivered to the craniospinal axis in 6, to the whole brain in 3. In 5 patients with mixed germ cell tumor or elevated tumor marker, irradiation was delievered to the craniospinal axis in 2, to the whole brain in 2, and to the primary site only in 1. Total doses ranged from 5,000 to 5,500 cGy to the primary site, 3,000 to 4,400 cGy to the whole brain, and 1,300 to 3,000 cGy to the spine. In these 14, local tumor was controlled and primary or spinal failure was not observed. One patient without elevated tumor marker was treated to the whole brain. The tumor was not controlled and he had spinal recurrence. Overall survival and disease-free survival rates were $86\%$ at 5 year. It is proven that radiation therapy is an effective treatment for suprasellar germ cell tumors. The neuroendocrinologic presentation, tumor marker status, early response to radiation measured on CT seem to be useful means for selecting patients for radiation therapy when tissue diagnosis is not available.

  • PDF

Cytologic Features of Primary Tumors in Central Nervous System (원발성 뇌종양의 세포학적 소견)

  • Oak, Soon-Ae;Chung, Jae-Gul;Gong, Gyung-Yub;Choe, Ghee-Young;Yu, Eun-Sil;Lee, In-Chul
    • The Korean Journal of Cytopathology
    • /
    • v.5 no.2
    • /
    • pp.90-98
    • /
    • 1994
  • There has been a marked increase in the utility of aspiration cytology for pathologic diagnosis. It may be applied to any kinds of organs and substitutes surgical biopsy. Be cause of the high risk of complication and difficulties In localization, aspiration cytology in the central nervous system (CNS) has been used with less frequency compared to other sites. However, with the advent of sophisticated imaging instruments, aspiration cytology of lesions in the CNS is being used increasingly. We present cytologic features of brain tumors as well as corresponding histologic findings. Eight types of tumors were aspirated intraoperatively and stained with the Papanicolaou method; 1 anaplastic astrocytoma, 1 glioblastoma multiforme, 1 ependymoma, 1 malignant ependymoma, 1 central neurocytoma, 1 primitive neuroectodermal tumor, 1 benign neurogenic tumor and 1 germinoma. Cytologic features of the CNS neoplasms were quite similar to those of histology except one spindle cell tumor. Reviewing various CNS neoplasms, it appears that cytology may be a useful diagnostic method.

  • PDF

Differentiation between Glioblastoma and Solitary Metastasis: Morphologic Assessment by Conventional Brain MR Imaging and Diffusion-Weighted Imaging

  • Jung, Bo Young;Lee, Eun Ja;Bae, Jong Myon;Choi, Young Jae;Lee, Eun Kyoung;Kim, Dae Bong
    • Investigative Magnetic Resonance Imaging
    • /
    • v.25 no.1
    • /
    • pp.23-34
    • /
    • 2021
  • Purpose: Differentiating between glioblastoma and solitary metastasis is very important for the planning of further workup and treatment. We assessed the ability of various morphological parameters using conventional MRI and diffusion-based techniques to distinguish between glioblastomas and solitary metastases in tumoral and peritumoral regions. Materials and Methods: We included 38 patients with solitary brain tumors (21 glioblastomas, 17 solitary metastases). To find out if there were differences in the morphologic parameters of enhancing tumors, we analyzed their shape, margins, and enhancement patterns on postcontrast T1-weighted images. During analyses of peritumoral regions, we assessed the extent of peritumoral non-enhancing lesion on T2- and postcontrast T1-weighted images. We also aimed to detect peritumoral neoplastic cell infiltration by visual assessment of T2-weighted and diffusion-based images, including DWI, ADC maps, and exponential DWI, and evaluated which sequence depicted peritumoral neoplastic cell infiltration most clearly. Results: The shapes, margins, and enhancement patterns of tumors all significantly differentiated glioblastomas from metastases. Glioblastomas had an irregular shape, ill-defined margins, and a heterogeneous enhancement pattern; on the other hand, metastases had an ovoid or round shape, well-defined margins, and homogeneous enhancement. Metastases had significantly more extensive peritumoral T2 high signal intensity than glioblastomas had. In visual assessment of peritumoral neoplastic cell infiltration using T2-weighted and diffusion-based images, all sequences differed significantly between the two groups. Exponential DWI had the highest sensitivity for the diagnosis of both glioblastoma (100%) and metastasis (70.6%). A combination of exponential DWI and ADC maps was optimal for the depiction of peritumoral neoplastic cell infiltration in glioblastoma. Conclusion: In the differentiation of glioblastoma from solitary metastatic lesions, visual morphologic assessment of tumoral and peritumoral regions using conventional MRI and diffusion-based techniques can also offer diagnostic information.

Evaluation of Metabolic Abnormality in Brain Tumors by In Viuo $^1$H MR Spectroscopy at 3 Tesla (3T 양성자 자기공명분광에 의한 뇌종양의 대사물질 이상소견)

  • Choe, Bo-Young;Jeun, Sin-Soo;Kim, Bum-Soo;Lee, Jae-Mun;Chung, Sung-Taek;Ahn, Chang-Beom;Oh, Chang-Hyun;Kim, Sun I.;Lee, Hyoung-Koo
    • Progress in Medical Physics
    • /
    • v.13 no.3
    • /
    • pp.120-128
    • /
    • 2002
  • To investigate differences between the metabolic ratios of normal controls and brain tumors such as astrocytomas and glioblastoma multiforme (GM) by proton MR spectroscopy (MRS) at 37 high field system. Using 3T MRI/MRS system, localized water-suppressed single-voxel technique in patients with brain tumors was employed to evaluate spectra with peaks of N-acetyl aspartate (NAA), choline-containing compounds (Cho), creatine/phosphocreatine (Cr) and lactate. On the basis of Cr, these peak areas were quantificated as a relative ratio. The variation of metabolites measurements of the designated region in 10 normal volunteers was less than 10%. Normal ranges of NAA/Cr and Cho/Cr ratios were 1.67$\pm$018 and 1.16$\pm$0.15, respectively. NAA/Cr ratio of all tumor tissues was significantly lower than that of the normal tissues (P=0.005). Cho/Cr ratio of glioblastoma multiforme was significantly higher than that of astrocytomas (P=0.001). Lactate was observed in all tumor cases. The present study demonstrated that the neuronal degradation or loss was observed in all tumor tissues. Higher grade of brain tumors was correlated with higher Cho/Cr ratio, indicating a significant dependence of Cho levels on malignancy of gliomas. This results suggest that clinical proton MR spectroscopy could be useful to predict tumor malignancy.

  • PDF

Clinical Application of Gamma Knife Dose Verification Method in Multiple Brain Tumors : Modified Variable Ellipsoid Modeling Technique

  • Hur, Beong Ik;Lee, Jae Min;Cho, Won Ho;Kang, Dong Wan;Kim, Choong Rak;Choi, Byung Kwan
    • Journal of Korean Neurosurgical Society
    • /
    • v.53 no.2
    • /
    • pp.102-107
    • /
    • 2013
  • Objective : The Leksell Gamma Knife$^{(R)}$ (LGK) is based on a single-fraction high dose treatment strategy. Therefore, independent verification of the Leksell GammaPlan$^{(R)}$ (LGP) is important for ensuring patient safety and minimizing the risk of treatment errors. Although several verification techniques have been previously developed and reported, no method has ever been tested statistically on multiple LGK target treatments. The purpose of this study was to perform and to evaluate the accuracy of a verification method (modified variable ellipsoid modeling technique, MVEMT) for multiple target treatments. Methods : A total of 500 locations in 10 consecutive patients with multiple brain tumor targets were included in this study. We compared the data from an LGP planning system and MVEMT in terms of dose at random points, maximal dose points, and target volumes. All data was analyzed by t-test and the Bland-Altman plot, which are statistical methods used to compare two different measurement techniques. Results : No statistical difference in dose at the 500 random points was observed between LGP and MVEMT. Differences in maximal dose ranged from -2.4% to 6.1%. An average distance of 1.6 mm between the maximal dose points was observed when comparing the two methods. Conclusion : Statistical analyses demonstrated that MVEMT was in excellent agreement with LGP when planning for radiosurgery involving multiple target treatments. MVEMT is a useful, independent tool for planning multiple target treatment that provides statistically identical data to that produced by LGP. Findings from the present study indicate that MVEMT can be used as a reference dose verification system for multiple tumors.

Clinical and Experimental Applications of $^1$H MRS (양성자 자기공명분광법의 임상과 실험응용)

  • Choe, Bo-Young;Lee, Hyoung-Koo;Suh, Tae-Suk;Shinn, Kyung-Sub
    • Progress in Medical Physics
    • /
    • v.7 no.1
    • /
    • pp.37-52
    • /
    • 1996
  • Image-guided localized, water-suppressed in vivo $^1$H MR spectroscopic studies were performed on the patients with brain tumors, acute cerebral infarction and schizophrenia, and dogs. GE Signa 1.5 T whole-body MRI/MRS system using STEAM pulse sequence was used. Proton metabolite ratios relative to creatine (Cr) were obtained using a Marquart algorithm. In vivo $^1$H MR spectra in brain neoplastic tissues revealed the changes of signal intensities of N-acetylaspartate (NAA), choline (Cho) and lactate (Lac) resonances. The present results suggest that the observed metabolite alterations from localized, water-suppressed in vivo $^1$H MR spectroscopy can be useful as an index of brain tumors, cerebral infarction and schizophrenia, and provide good quality metabolic information of cerebral tissue in the field of thanato-chronology.

  • PDF

Radiotherapy Result of Brain Stem Tumors (뇌간 종양의 방사선 치료 성적)

  • Kim, Il-Han;Yang, Mi-Gyoung;Park, Charn-Il
    • Radiation Oncology Journal
    • /
    • v.7 no.2
    • /
    • pp.189-196
    • /
    • 1989
  • Twenty five patients with tumors of the brain stem were treated with radiotherapy between 1979 and 1987. Histological diagnosis could be obtained in 6 cases, and other 19 patients were diagnosed by neurologic findings and CT or MRI. Eighteen patients were treated by radical radiotherapy and 6 patients received both operation and radiotherapy, while 1 patient received chemotherapy after radiotherapy. Total dose ranged from 50 Gy to 55 Gy. By an clinical scoring scale at 2 months after radiotherapy, no complete response was obtained, but 16 cases achieved partial response, 2 cases were stable, and 4 cases were deteriorated. The overall survival rate at 3 years was $36\%$ Age, performance status at diagnosis, degree of cranial nerve involvement, CT pattern of post-contrast enhancement, and clinical responese by scoring scale were correlated with survival.

  • PDF