• Title/Summary/Keyword: Brain Stem

Search Result 340, Processing Time 0.027 seconds

Activation of Vestibular Neurons Projecting to Autonomic Brain Stem Nuclei Following Acute Hypotension in Rats

  • Choi, Dong-Ok;Yon, Chon-Il;Choi, Myoung-Ae;Park, Byung-Rim;Kim, Min-Sun
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.8 no.4
    • /
    • pp.181-185
    • /
    • 2004
  • Extracellular regulated protein kinase1/2 (pERK1/2) is one of the major regulatory factors for transcription of the c-fos oncogene in neurons. The purpose of this study was to evaluate the expression of phosphorylated ERK1/2 within the vestibular nuclei (VN) of rats following acute arterial hypotension. Following the acute arterial hypotension induced by rapid hemorrhage, a significant number of pERK1/2-immunoreactive neurons appeared bilaterally in the caudal aspect of the medial and inferior VN. No labeling of pERK1/2 was observed in the lateral VN. The peak expression of pERK1/2 in these nuclei occurred within 5 min after hemorrhage. However, in bilaterally labyrinthectomized rats, the appearance of pERK1/2-immunoreactive neurons was eliminated in the VN. Western blot confirmed the effect of bilateral labyrinthectomy on pERK1/2 protein expression in the medial vestibular nucleus 5 min after hemorrhage. These results suggest that, following acute hypotension, afferent signals from the peripheral vestibular receptors are required for activation of ERK 1/2 in the VN.

Dissecting Aneurysm of Vertebral Artery Manifestating as Contralateral Abducens Nerve Palsy

  • Jeon, Jin Sue;Lee, Sang Hyung;Son, Young-Je;Chung, Young Seob
    • Journal of Korean Neurosurgical Society
    • /
    • v.53 no.3
    • /
    • pp.194-196
    • /
    • 2013
  • Isolated abducens nerve paresis related to ruptured vertebral artery (VA) aneurysm is rare. It usually occurs bilaterally or ipsilaterally to the pathologic lesions. We report the case of a contralateral sixth nerve palsy following ruptured dissecting VA aneurysm. A 38-year-old man was admitted for the evaluation of a 6-day history of headache. Abnormalities were not seen on initial computed tomography (CT). On admission, the patient was alert and no signs reflecting neurologic deficits were noted. Time of flight magnetic resonance angiography revealed a fusiform dilatation of the right VA involving origin of the posterior inferior cerebellar artery. The patient suddenly suffered from severe headache with diplopia the day before the scheduled cerebral angiography. Neurologic examination disclosed nuchal rigidity and isolated left abducens nerve palsy. Emergent CT scan showed high density in the basal and prepontine cistern compatible with ruptured aneurismal hemorrhage. Right vertebral angiography illustrated a right VA dissecting aneurysm with prominent displaced vertebrobasilar artery to inferiorly on left side. Double-stent placement was conducted for the treatment of ruptured dissecting VA aneurysm. No diffusion restriction signals were observed in follow-up magnetic resonance imaging of the brain stem. Eleven weeks later, full recovery of left sixth nerve palsy was documented photographically. In conclusion, isolated contralateral abducens nerve palsy associated with ruptured VA aneurysm may develop due to direct nerve compression by displaced verterobasilar artery triggered by primary thick clot in the prepontine cistern.

Expression of Tryptophan Hydroxylase in the Hypothalamus and Hippocampus of Fasting and Anorexia Mutant Mice (절식시킨 생쥐와 식욕부진 돌연변이 생쥐의 시상하부와 해마에서의 Tryptophan Hydroxylase의 발현)

  • 김미자;김영옥;정주호
    • Journal of Nutrition and Health
    • /
    • v.33 no.1
    • /
    • pp.5-12
    • /
    • 2000
  • The control of food intake is a complex phenomenon caused by interactions between central and peripheral control mechanisms. The hypothalamic and brain stem regions have been identified as centers for food intake and energy expenditure in animals and humans. Of these, the ventromedial and lateral hypothalamic areas are involved in the control of food intake. Also, large amounts of neurotransmitters known to be involved in feeding are present in the hippocampus. Paricularly, tryptophan hydroxylase(TPH), known as a factor in the control of food intake, is present in high levels in the paraventricular nucleus of the hypothalamus and the hippocampus. In this study, TPH expression levels in the hypothalamic and hippocampal regions of fasting, anorexia mutant, and control mice were compared using RT-PCR and immunohistochemical methods. Differences in body weight among the fasting, anorexia mutant, and control groups wire observed. No statistical significance was noted in the number of TPH-immunoactivity in the hypothalamic nuclei, but relatively higher populations of such fibers were observed in the fasting group : the control group yielded samples with an overall value of 170.3${\pm}$3.5 in terms of immunoreactivity-induced optical density, whereas the fasting group yielded a value of 168.3${\pm}$2.6, and the anorexia mutant group 171.3${\pm}$0.8(lower values represent higher immunoreactivity), In fasting mice, stained neuronal bodies were observed in the CA3 and dentate gyrus regions of the hippocampus, which was different from the hippocampal regions of the control and anorexia mutant mice. The RT-PCR procedures were performed using whole brains, precluding any statistically noticeable findings in relation to specific regions, although the fasting and anorexia mutant groups showed 123.3% and 102.9%, respectively, of the TPH mRNA level in the control. The overall results present evidences of the role of TPH in the decrease in food intake during fasting caused by exogenic factors and in genetically acquired anorexia. (Korean J Nutrition 33(1) : 5-12, 2000)

  • PDF

Noradrenergic Modulation of Spontaneous Inhibitory Postsynaptic Currents in the Hypothalamic Paraventricular Nucleus

  • Lee, Long-Hwa;Chong, Won-Ee;Lee, Ki-Ho;Park, Jin-Bong;Ryu, Pan-Dong
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.6 no.2
    • /
    • pp.71-80
    • /
    • 2002
  • Previous studies have suggested that brain stem noradrenergic inputs differentially modulate neurons in the paraventricular nucleus (PVN). Here, we compared the effects of norepinephrine (NE) on spontaneous GABAergic inhibitory postsynaptic currents (sIPSCs) in identified PVN neurons using slice patch technique. In 17 of 18 type I neurons, NE $(30{\sim}100{\mu}M)$ reversibly decreased sIPSC frequency to $41{\pm}7%$ of the baseline value $(4.4{\pm}0.8\;Hz,\;p<0.001).$ This effect was blocked by yohimbine $(2{\sim}20{\mu}M),$ an ${\alpha}_2-adrenoceptor$ antagonist and mimicked by clonidine $(50{\mu}M),$ an ${\alpha}_2-adrenoceptor$ agonist. In contrast, NE increased sIPSC frequency to $248{\pm}32%$ of the control $(3.06{\pm}0.37\;Hz,\;p<0.001)$ in 31 of 54 type II neurons, but decreased the frequency to $41{\pm}7$ of the control $(5.5{\pm}1.3\;Hz)$ in the rest of type II neurons (p<0.001). In both types of PVN neurons, NE did not affect the mean amplitude and decay time constant of sIPSCs. In addition, membrane input resistance and amplitude of sIPSC of type I neurons were larger than those of type II neurons tested (1209 vs. 736 $M{\Omega},$ p<0.001; 110 vs. 81 pS, p<0.001). The results suggest that noradrenergic modulation of inhibitory synaptic transmission in the PVN decreases the neuronal excitability in most type I neurons via ${\alpha}_2-adrenoceptor,$ however, either increases in about 60% or decreases in 40% of type II neurons.

Isolation of Mouse Ig Heavy and Light Chain Genomic DNA Clones, and Construction of Gene Knockout Vector for the Generation of Humanized Xenomouse (인간 단클론 항체 생산용 Humanized Xenomouse 제작의 기초 소재인 생쥐 Ig 중사슬 및 경사슬 Genomic DNA 클론의 확보 및 유전자 적중 벡터의 제작)

  • Lee, Hee-kyung;Cha, Sang-hoon
    • IMMUNE NETWORK
    • /
    • v.2 no.4
    • /
    • pp.233-241
    • /
    • 2002
  • Background: Monoclonal antibodies (mAb) of rodent origin are produced with ease by hybridoma fusion technique, and have been successfully used as therapeutic reagents for humans after humanization by genetic engineering. However, utilization of these antibodies for therapeutic purpose has been limited by the fact that they act as immunogens in human body causing undesired side effects. So far, there have been several attempts to produce human mAbs for effective in vivo diagnostic or therapeutic reagents including the use of humanized xenomouse that is generated by mating knockout mice which lost Ig heavy and light chain genes by homologous recombination and transgenic mice having both human Ig heavy and light gene loci in their genome. Methods: Genomic DNA fragments of mouse Ig heavy and light chain were obtained from a mouse brain ${\lambda}$ genomic library by PCR screening and cloned into a targeting vector with ultimate goal of generating Ig knockout mouse. Results: Through PCR screening of the genomic library, three heavy chain and three light chain Ig gene fragments were identified, and restriction map of one of the heavy chain gene fragments was determined. Then heavy chain Ig gene fragments were subcloned into a targeting vector. The resulting construct was introduced into embryonic stem cells. Antibiotic selection of transfected cells is under the progress. Conclusion: Generation of xenomouse is particularly important in medical biotechnology. However, this goal is not easily achieved due to the technical difficulties as well as huge financial expenses. Although we are in the early stage of a long-term project, our results, at least, partially contribute the successful generation of humanized xenomouse in Korea.

Impaired Memory in OT-II Transgenic Mice Is Associated with Decreased Adult Hippocampal Neurogenesis Possibly Induced by Alteration in Th2 Cytokine Levels

  • Jeon, Seong Gak;Kim, Kyoung Ah;Chung, Hyunju;Choi, Junghyun;Song, Eun Ji;Han, Seung-Yun;Oh, Myung Sook;Park, Jong Hwan;Kim, Jin-il;Moon, Minho
    • Molecules and Cells
    • /
    • v.39 no.8
    • /
    • pp.603-610
    • /
    • 2016
  • Recently, an increasing number of studies have focused on the effects of CD4+ T cell on cognitive function. However, the changes of Th2 cytokines in restricted CD4+ T cell receptor (TCR) repertoire model and their effects on the adult hippocampal neurogenesis and memory are not fully understood. Here, we investigated whether and how the mice with restricted CD4+ repertoire TCR exhibit learning and memory impairment by using OT-II mice. OT-II mice showed decreased adult neurogenesis in hippocampus and short- and long- term memory impairment. Moreover, Th2 cytokines in OT-II mice are significantly increased in peripheral organs and IL-4 is significantly increased in brain. Finally, IL-4 treatment significantly inhibited the proliferation of cultured adult rat hippocampal neural stem cells. Taken together, abnormal level of Th2 cytokines can lead memory dysfunction via impaired adult neurogenesis in OT-II transgenic.

A Case of Krabbe Disease with Infantile Spasm (영아 연축을 동반한 Krabbe병 1례)

  • Kim, Ja Kyoung;Kim, Dal Hyun;Kang, Bo Young;Kwon, Young Se;Hong, Young Jin;Son, Byong Kwan;Yoon, Hye Ran
    • Clinical and Experimental Pediatrics
    • /
    • v.46 no.1
    • /
    • pp.95-99
    • /
    • 2003
  • Krabbe disease is a rare autosomal recessive disorder clinically characterized by retardation in motor development, prominent spasticity, seizures, and optic atrophy. Pathologically, there are many globoid cells in the white matter, in addition to the lack of myelin and the presence of severe gliosis. Hence Krabbe disease is known as globoid cell leukodystrophy. Biochemically, the primary enzymatic deficiency in Krabbe disease is galactocerebroside beta-galactosidase. Patients with Krabbe disease can be subdivided into the early-onset type and late-onset type, according to the onset of clinical manifestations. Most patients with early-onset type die before their second birthday. We describe a girl with Krabbe disease associated with uncontrolled seizures, which was confirmed with biochemical study and MRI. The clinical findings of this patient included hyperirritability, scissoring of the legs, flexion of arm, and clenching of the fists, and generalized tonic seizures. EEG showed hypsarrhythmia, and MRI demonstrated degenerative white matter changes in bilateral periventricular white matter, posterior rim of internal capsule, basal ganglia and brain stem on T2W1 and FLAIR image. The diagnosis was based on clinical features of progressive neurologic deterioration in conjunction with low galactocerebroside beta-galactosidase activity.

Hearing loss screening tool (COBRA score) for newborns in primary care setting

  • Poonual, Watcharapol;Navacharoen, Niramon;Kangsanarak, Jaran;Namwongprom, Sirianong;Saokaew, Surasak
    • Clinical and Experimental Pediatrics
    • /
    • v.60 no.11
    • /
    • pp.353-358
    • /
    • 2017
  • Purpose: To develop and evaluate a simple screening tool to assess hearing loss in newborns. A derived score was compared with the standard clinical practice tool. Methods: This cohort study was designed to screen the hearing of newborns using transiently evoked otoacoustic emission and auditory brain stem response, and to determine the risk factors associated with hearing loss of newborns in 3 tertiary hospitals in Northern Thailand. Data were prospectively collected from November 1, 2010 to May 31, 2012. To develop the risk score, clinical-risk indicators were measured by Poisson risk regression. The regression coefficients were transformed into item scores dividing each regression-coefficient with the smallest coefficient in the model, rounding the number to its nearest integer, and adding up to a total score. Results: Five clinical risk factors (Craniofacial anomaly, Ototoxicity, Birth weight, family history [Relative] of congenital sensorineural hearing loss, and Apgar score) were included in our COBRA score. The screening tool detected, by area under the receiver operating characteristic curve, more than 80% of existing hearing loss. The positive-likelihood ratio of hearing loss in patients with scores of 4, 6, and 8 were 25.21 (95% confidence interval [CI], 14.69-43.26), 58.52 (95% CI, 36.26-94.44), and 51.56 (95% CI, 33.74-78.82), respectively. This result was similar to the standard tool (The Joint Committee on Infant Hearing) of 26.72 (95% CI, 20.59-34.66). Conclusion: A simple screening tool of five predictors provides good prediction indices for newborn hearing loss, which may motivate parents to bring children for further appropriate testing and investigations.

Case of Oriental Medicine Therapy on Intractable Hiccup Induced by Pontine Infarction (뇌교경색 발병후 병발된 난치성 애역의 치험 1례)

  • Kang, Baek-Gyu;Lee, Sun-Woo;Park, Sang-ParkMoo;Han, Deok-Jin;Lee, Jung-Wook;Kim, Hye-Jung;Moon, Byung-Soon;Lee, In
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.22 no.1
    • /
    • pp.222-225
    • /
    • 2008
  • Hiccup is one of common symptoms that remains poorly understood. The hiccups coordinating center is located in the brain-stem reticular formation. Hiccups may be derived from 400 medical origins. Stroke is an infrequent cause of intractable hiccups. Intractable hiccups in pontine infarction remain poorly understood. As for treatments of hiccups, physical stimulating methods, pharmacological therapies and surgery are occidental conventional methods. In Pharmacological therapies, antidepressants, gastric motility stimulants, antispastic drugs are commonly used. Oriental medicines and acupuncture are also used frequently to treat hiccups. We have treated a case of intractable hiccup induced by pontine infarction with herbal medication; Gwakhyangjeonggi-san gami, acupuncture and moxibustion, and successfully improved. This case showed oriental medicine therapy is effective in intractable hiccup induced by pontine infarction.

Head Thrust Test (두부충동 검사)

  • Choi, Kwang-Dong;Oh, Sun-Young;Kim, Ji Soo
    • Annals of Clinical Neurophysiology
    • /
    • v.8 no.1
    • /
    • pp.1-5
    • /
    • 2006
  • The head thrust maneuver is a simple bedside test of the higher frequency vestibulo-ocular reflex, which is based on Ewald's second law. It is performed by grasping the patient's head and applying a brief, small-amplitude, high-acceleration head turn, first to one side and then to the other. The patient fixates on the examiner's nose and the examiner watches for corrective rapid eye movements (saccades), which are a sign of decreased vestibular response. The "catch-up" saccades after a head thrust in one direction indicate a peripheral vestibular lesion on that side (in the labyrinth or the $8^{th}$ nerve including the root's entry zone in the brain stem). An individual pair of vertical semicircular canals can also be stimulated by turning the head to the right or left by $45^{\circ}$ and then by rotating the head in the pitch plane relative to the body. Recent studies have suggested that assessment of individual semicircular canal function by head thrust test may provide useful information for anatomical and functional details of a variety of peripheral vestibulopathies and for predicting the prognosis of vestibular neuritis. In central vestibulopathy, the head thrust test may also be valuable sign to determine dysfunction of the central pathways from individual semicircular canals and its role for the development of diverse central nystagmus.

  • PDF