• 제목/요약/키워드: Brain Korea 21

검색결과 924건 처리시간 0.038초

Assembly of chemically reduced graphene oxide with folic acid functionalized with pyrene moieties and electrochemical sensing of folate receptors

  • Kwon, Binhee;Park, Jongyeap;Jeong, Woojun;Jeong, Guembi;Ryu, Hyeong Seon;Paoprasert, Peerasak;Park, Sung Young;In, Insik
    • Carbon letters
    • /
    • 제27권
    • /
    • pp.26-34
    • /
    • 2018
  • To formulate folate receptor (FR)-specific graphene-based electrochemical electrodes, a folic acid (FA) derivative attached with two pyrene molecules on the glutamate tail of FA was synthesized. The resulting pyrene-functionalized FA (FA-Py) presented the spontaneous noncovalent binding on chemically reduced graphene oxides (rGO) through an ${\pi}-{\pi}$ interaction. Ultrathin morphology, high water-resistance, and preservation of intact FR-specific pteroates from the rGO/FA-Py assembly allow this assembly to be exploited as robust and FR-specific electrochemical electrode materials. The limits of detecting rGO/FA-Py modified electrodes were found to be as low as 3.07 nM in FR concentrations in cyclic voltammetry analysis.

Synthesis of a PEGylated tracer for radioiodination and evaluation of potential in tumor targeting

  • Abhinav Bhise;Sushil K Dwivedi;Kiwoong Lee;Jeong Eun Lim;Subramani Rajkumar;Woonghee Lee;Seong Hwan Cho;Jeongsoo Yoo
    • 대한방사성의약품학회지
    • /
    • 제7권2호
    • /
    • pp.79-84
    • /
    • 2021
  • Radiopharmaceuticals are important for tumor diagnosis and therapy. To deliver a radiotracer at the desired target excluding non-targeted tissues is difficult The development of a targeted tracer that has a good clearance profile while maintaining high biostability and biocompatibility is key to optimizing its biodistribution and transport across biological barriers. Improving the hydrophilicity of radiotracers by PEGylation can reduce serum binding, allowing the tracer to circulate without retention and reducing its affinity for non-targeted tissues. In this study, we synthesized a new benzamido tracer (SnBz-PEG36) with the introduction of a low molecular weight polyethylene glycol unit (PEG36, ~2,100 Da). The tumor targeting efficiency and biodistribution of [131I]-Bz-PEG36 or radiotracer-loaded liposomes were evaluated after their administration to normal mice or mouse tumor models including CT26 (xenograft) and 4T1 (xenograft and orthotopic). Most of the radiotracer was cleared out rapidly (1-24 h post-administration) through the kidney and there was little tumor uptake.