• Title/Summary/Keyword: Brain Gray Matter

Search Result 123, Processing Time 0.024 seconds

A Study on Segmentation and Volume Calculation of the White Matter and Gray Matter for Brain Image Processing (뇌 영상처리를 위한 백질과 회백질의 추출 및 체적 산출에 관한 연구)

  • Kim, Shin-Hong
    • 전자공학회논문지 IE
    • /
    • v.43 no.4
    • /
    • pp.21-27
    • /
    • 2006
  • This paper is for the segmentation and volume calculation of the white matter and gray matter from brain MRI. We segment white matter, gray matter and CSF from the Brain image in the normal and abnormal person, and calculate the volume of segmented tissue. In this paper, we present a new method of extracting white matter, gray matter and CSF and calculation its volume from MR images for brain. And we have developed the determining method of threshold that can extract white matter and gray matter from MR image for brain through the analysis of gray values represented by ratio of each component. We proposed the calculation method of volume for white matter and gray matter by using number of extracted pixels in each slice. This algorithm input CSF/Head volume ratio and age of patient and calculates discriminant value through discriminant expression, classifies normal and abnormal using calculated discriminant value. As a result, we could blow that white matter and gray matter volume decrease and CSF volume increase as we grow gold.

Reduced Gray Matter Density in the Posterior Cerebellum of Patients with Panic Disorder : A Voxel-Based Morphometry Study

  • Lee, Junghyun H.;Jeon, Yujin;Bae, Sujin;Jeong, Jee Hyang;Namgung, Eun;Kim, Bori R.;Ban, Soonhyun;Jeon, Saerom;Kang, Ilhyang;Lim, Soo Mee
    • Korean Journal of Biological Psychiatry
    • /
    • v.22 no.1
    • /
    • pp.20-27
    • /
    • 2015
  • Objectives It is increasingly thought that the human cerebellum plays an important role in emotion and cognition. Although recent evidence suggests that the cerebellum may also be implicated in fear learning, only a limited number of studies have investigated the cerebellar abnormalities in panic disorder. The aim of this study was to evaluate the cerebellar gray matter deficits and their clinical correlations among patients with panic disorder. Methods Using a voxel-based morphometry approach with a high-resolution spatially unbiased infratentorial template, regional cerebellar gray matter density was compared between 23 patients with panic disorder and 33 healthy individuals. Results The gray matter density in the right posterior-superior (lobule Crus I) and left posterior-inferior (lobules Crus II, VIIb, VIIIa) cerebellum was significantly reduced in the panic disorder group compared to healthy individuals (p < 0.05, false discovery rate corrected, extent threshold = 100 voxels). Additionally, the gray matter reduction in the left posterior-inferior cerebellum (lobule VIIIa) was significantly associated with greater panic symptom severity (r = -0.55, p = 0.007). Conclusions Our findings suggest that the gray matter deficits in the posterior cerebellum may be involved in the pathogenesis of panic disorder. Further studies are needed to provide a comprehensive understanding of the cerebro-cerebellar network in panic disorder.

Fully Automatic Segmentation and Volumetry on Brain MRI of Coronal Section

  • Sung, Yun-Chang;Song, Chang-Jun;Noh, Seung-Moo;Park, Jong-Won
    • Proceedings of the IEEK Conference
    • /
    • 2000.07a
    • /
    • pp.441-445
    • /
    • 2000
  • This study is to segment white matter, gray matter, and cerebrospinal fluid(CSF) on a brain MR image of coronal section and to calculate the volume of each. First, we segmented the whole region of a brain from a black colored background, a skull and a fat layer. Then, we calculated the partial volume of each component, which was present in scanning finite thickness, with the arithmetical analysis of gray value from the internal region of a brain showing the blurring effects on the basis of the MR image forming principle. Calculated partial volumes of white matter, gray matter and CSF were used to determine the threshold for the segmentation of each component on a brain MR image showing the blurring effects. Finally, the volumes of segmented white matter, gray matter, and CSF were calculated. The result of this study can be used as the objective diagnostic method to determine the degree of brain atrophy of patients who have neurodegenertive diseases such as Alzheimer’s disease and cerebral palsy.

  • PDF

Region Segmentation and Volumetry of Brain MR Image represented as Blurred Gray Value by the Partial Volume Artifact (부분체적에 의해 번진 명암 값으로 표현된 뇌의 자기공명영상에 대한 영역분할 및 체적계산)

  • 성윤창;송창준;노승무;박종원
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.25 no.7A
    • /
    • pp.1006-1016
    • /
    • 2000
  • This study is to segment white matter, gray matter, and cerebrospinal fluid(CSF) on a brain MR image and to calculate the volume of each. First, after removing the background on a brain MR image, we segmented the whole region of a brain from a skull and a fat layer. Then, we calculated the partial volume of each component, which was present in scanning finite thickness, with the arithmetical analysis of gray value from the internal region of a brain showing the blurring effects on the basis of the MR image forming principle. Calculated partial volumes of white matter, gray matter and CSF were used to determine the threshold for the segmentation of each component on a brain MR image showing the blurring effects. Finally, the volumes of segmented white matter, gray matter, and CSF were calculated. The result of this study can be used as the objective diagnostic method to determine the degree of brain atrophy of patients who have neurodegenerative diseases such as Alzheimer's disease and cerebral palsy.

  • PDF

VGG-based BAPL Score Classification of 18F-Florbetaben Amyloid Brain PET

  • Kang, Hyeon;Kim, Woong-Gon;Yang, Gyung-Seung;Kim, Hyun-Woo;Jeong, Ji-Eun;Yoon, Hyun-Jin;Cho, Kook;Jeong, Young-Jin;Kang, Do-Young
    • Biomedical Science Letters
    • /
    • v.24 no.4
    • /
    • pp.418-425
    • /
    • 2018
  • Amyloid brain positron emission tomography (PET) images are visually and subjectively analyzed by the physician with a lot of time and effort to determine the ${\beta}$-Amyloid ($A{\beta}$) deposition. We designed a convolutional neural network (CNN) model that predicts the $A{\beta}$-positive and $A{\beta}$-negative status. We performed 18F-florbetaben (FBB) brain PET on controls and patients (n=176) with mild cognitive impairment and Alzheimer's Disease (AD). We classified brain PET images visually as per the on the brain amyloid plaque load score. We designed the visual geometry group (VGG16) model for the visual assessment of slice-based samples. To evaluate only the gray matter and not the white matter, gray matter masking (GMM) was applied to the slice-based standard samples. All the performance metrics were higher with GMM than without GMM (accuracy 92.39 vs. 89.60, sensitivity 87.93 vs. 85.76, and specificity 98.94 vs. 95.32). For the patient-based standard, all the performance metrics were almost the same (accuracy 89.78 vs. 89.21), lower (sensitivity 93.97 vs. 99.14), and higher (specificity 81.67 vs. 70.00). The area under curve with the VGG16 model that observed the gray matter region only was slightly higher than the model that observed the whole brain for both slice-based and patient-based decision processes. Amyloid brain PET images can be appropriately analyzed using the CNN model for predicting the $A{\beta}$-positive and $A{\beta}$-negative status.

Segmentation and Volume Calculation through the Analysis of Blurred Gray Value from the Brain MRI (뇌의 MR 영상에서 번짐 현상의 명암 값 분석을 통한 백질과 회백질의 추출 및 체적 산출)

  • Sung, Yun-Chang;Yoo, Seung-Wha;Song, Chang-Jun;Park, Jong-Won
    • Journal of KIISE:Software and Applications
    • /
    • v.27 no.8
    • /
    • pp.815-826
    • /
    • 2000
  • This study is for the segmentation and volume calculation of the white matter and gray matter from brain MRI. In general, the volume of white and gray matter is reduced by contraction of each components in the case of mental retardation which are Alzheimer's disease and Down's syndrome. As results, it is useful for diagnostic and early detection for various mental retardation through the tracing of variation for its volume from the brain MRI. But, until now, it was very difficult to calculate the partial volume of each components existing in some thickness, because MR image was represented by single gray value after scanning by MR scanner. Accordingly, new segmentation algorithm proposed in this paper is to calculate the partial volume of the white and gray matter existing in some thickness through the analysis of the blurred gray value, and is to determine the threshold for segmentation of white and gray matter, and is to calculate the volume of each segmented component. And finally, proposed algorithm was applied the models which was created manually, and then acquired results was compared with that of original model.

  • PDF

Voxel-Based Morphometry Study of Gray Matter Abnormalities in Neurodegenerative Disease with Obsessive-Compulsive Behaviors

  • Lee, Kang Joon;Miller, Bruce L.
    • Korean Journal of Psychosomatic Medicine
    • /
    • v.22 no.2
    • /
    • pp.130-137
    • /
    • 2014
  • Objectives : Obsessive-compulsive(OC) symptoms have yet to be directly studied in neurodegenerative conditions involving behavioral changes. To examine regional abnormalities in the brains of dementia patients with OC symptoms, we assessed the gray matter density using voxel-based morphometry(VBM). Methods : We performed brain magnetic resonance imaging(MRI) with VBM analysis in 106 dementia patients with OC behaviors. In this study, OC behaviors were investigated in patients with neurodegenerative disease using the modified Manchester Behavior Questionnaire. Results : The OC behavior scores were correlated with structural brain volume using VBM. The total OC symptom score correlated negatively with the volume of both putamens, the right middle orbitofrontal gyrus, both anterior cingulate cortices, and the left insula(p<0.001, uncorrected). No gray matter reductions were associated specifically with the OC symptom sub-categories. Conclusions : Our results suggest that abnormalities in these brain regions may play an important role in the pathophysiology of OCD in neurodegenerative disease. This is the first lesion study to investigate the neural basis of OCD behaviors in neurodegenerative disease.

  • PDF

MR Imaging and Histological Findings of Experimental Cerebral Fat Embolism in Cats

  • Park Byung-Rae;Ko Seong-Jin;Kim Hwa-Gon
    • Biomedical Science Letters
    • /
    • v.10 no.3
    • /
    • pp.285-291
    • /
    • 2004
  • To determine the magnetic resonance (MR) imaging findings and natural history of cerebral fat embolism in a cat model, and to correlate the MR imaging and histologic fmdings. Intemel carotid artery of 11 cats was injected with 0.1 ml of triolein. T2-weighted, T1-weighted and Gd-enhanced T1-weighted images were obtained serially for 2 hours, 1 days, 4 days, 1 week, 2 weeks and 3 weeks after embolization. Any abnormal signal intensity was evaluated. After MR imaging at 3 weeks, brain tissue was obtained for light microscopic (LM) examination using hematoxylin-eosin (HE) and Luxol fast blue staining, and for electron microscopic examination. The LM examination with HE staining revealed normal histological findings in the greater part of an embolized lesion. Cystic change was observed in the gray matter of 8 cats, while in the gray and white matter of 3 cats. At LM examination, Luxol fast blue, staining demonstrated demyelination around the cystic change occurring in the white matter, and EM examination of the embolized cortex revealed sporadic intracapillary fat vacuoles (n=11) and disruption of the blood-brain barrier (n=4). Most lesions were normal, however, and perivascular interstitial edema and cellular swelling were mild compared with the control side. The greater part of an embolized lesion showed reversible findings at MR and histological examination. Irreversible focal necrosis was, however, observed in gray and white matter at weeks 3.

  • PDF

Medkum TAu Inversion Recover(MTIR) Sequence for White Matter Suppression in Brain Cortical Lesions (뇌피질 질환에서 뇌백질 신호 억제를 위한 중간시간 반전회복 영상 기법)

  • 정경호;이정민;김종수
    • Investigative Magnetic Resonance Imaging
    • /
    • v.3 no.1
    • /
    • pp.60-65
    • /
    • 1999
  • Purpose : The purpose of this study was to evaluate the image quality, contrast characteristics, and possible clinical utility of Medium Tau Inversion Recovery(MTIR) sequence with white matter suppression in patients with brain cortical lesion. Materials and methods : Two normal volunteers and twenty-one patients with cortical lesion were scanned with MTIR as well as other MR imaging sequences. Gray-white matter contrast was evaluated objectively using region-of-interest calculations, including percent contrast and contrast-to-noise ratio(CNR). MTIR sequence was visually compared with other sequences in 21 patients with cortical lesion including conspicuity and detection rate. Results : MTIR sequence had the highest present contrast and CNR between the gray matter and white matter. In twenty-one cases of cortical lesion including cortical dysplasia, MTIR sequence improved delineation and conspicuity of lesion, but MTIR sequence could not detect new lesions. Conclusion : The MTIR sequence well delineated the cortical lesions, particularly in including cortical dysplasia. It may be used as an adjunctive imaging sequence in case of poor gray and white matter differentiation with conventional T1-weighted sequences.

  • PDF

Individual Differences in Regional Gray Matter Volumes According to the Cognitive Style of Young Adults

  • Hur, Minyoung;Kim, Chobok
    • Science of Emotion and Sensibility
    • /
    • v.22 no.4
    • /
    • pp.65-74
    • /
    • 2019
  • Extant research has proposed that the Object-Spatial-Verbal cognitive style can elucidate individual differences in the preference for modality-specific information. However, no studies have yet ascertained whether this type of information processing evinces structural correlations in the brain. Therefore, the current study used voxel-based morphometry (VBM) analyses to investigate individual differences in gray matter volumes based on the Object-Spatial-Verbal cognitive style. For this purpose, ninety healthy young adults were recruited to participate in the study. They were administered the Korean version of the Object-Spatial-Verbal cognitive style questionnaire, and their anatomical brain images were scanned. The VBM results demonstrated that the participants' verbal scores were positively correlated with regional gray matter volumes (rGMVs) in the right superior temporal sulcus/superior temporal gyrus, the bilateral parahippocampal gyrus/fusiform gyrus, and the left inferior temporal gyrus. In addition, the rGMVs in these regions were negatively correlated with the relative spatial preference scores obtained by individual participants. The findings of the investigation provide anatomical evidence that the verbal cognitive style could be decidedly relevant to higher-level language processing, but not to basic language processing.