• Title/Summary/Keyword: Brain Anatomy

Search Result 345, Processing Time 0.022 seconds

C-FOS EXPRESS10N IN THE RAT TRIGEMINAL SENSORY NUCLEUS COMPLEX FOLLOWING TOOTH MOVEMENT (치아이동에 의한 백서 삼차신경감각핵군내 c-Fos의 발현)

  • Min, Kyung-Ho;Park, Hyo-Sang;Bae, Yong-Chul;Sung, Jae-Hyun
    • The korean journal of orthodontics
    • /
    • v.28 no.3 s.68
    • /
    • pp.441-452
    • /
    • 1998
  • The c-fos is known as neuronal marker of second neurons which is activated by noxious peripheral stimulation. To investigate the changes of c-fos el(pression in the trigeminal nucleus complex during tooth movement, immunohistochemical study was performed. Experimental rats(9 weeks old, 210 gm 21 rats) were divided into seven groups(normal, 1 hour group, 3 hour group, 6 hour group, 12 hour group, 1 day group,3 day group). Rats in the normal group were anesthesized without orthodontic force. Rats in the experimental groups were applied orthodontic force (approximately 30 gm) to upper right maxillary molar. Frozen sections of brain stem were immunostained using rabbit antisera. The changes of c-fos expression were observed with respect to rostrocaudal distribution, laminar organization, md duration of orthodontic force application. The study results were as follows $\cdot$The c-fos nuclei in the dorsal part were observed from ipsilateral transition zone of subnucleus interpolaris and subnucleus caudalis to $C_1$ cervical dorsal horn rostrocaudally. The maximal peak point was the rostral part of subnucleus caudalis. The greatest proportion of c-fos cells were located within lamina I and II. $\cdot$The c-fos nuclei in the dorsal Part were observed from the most caudal part of subnucleus interpolaris to the middle part of the subnucleus caudalis. $\cdot$The number of c-fos immunoreactive dot increased at 1 hour group, reached its maximum at the 3 and 6 hour groups, and showed a decreasing trend after 12 hours. These results imply that nociceptive stimulation caused by continuous orthodontic force might be modulated by transition zone of subnucleus interpolaris and subnucleus caudalis, subnucleus caudalis, $C_1$ spinal dorsal hem.

  • PDF

Paraoxonase 1 (PON1) Q192R Gene Polymorphism and Cancer Risk: A Meta-Analysis Based on 30 Publications

  • Zhang, Meng;Xiong, Hu;Fang, Lu;Lu, Wei;Wu, Xun;Huang, Zhan-Sen;Wang, Yong-Qiang;Cai, Zhi-Ming;Wu, Song
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.16 no.10
    • /
    • pp.4457-4463
    • /
    • 2015
  • Common genetic variation Q192R in the paraoxonase 1 (PON1) gene has been considered to be implicated in the development of many cancers. Nevertheless, results from the related studies were inconsistent. To elucidate the association, we performed a meta-analysis for 8,112 cases and 10,037 controls from 32 published case-control studies. Odds ratios (ORs) with 95% confidence intervals (CIs) were used to assess the strength of the association by STATA 12.0 software. Overall, we revealed that the PON1-192R allele was associated with a reduced risk of the overall cancers. Moreover, in the stratified analysis by cancer types (breast cancer, prostate cancer, brain cancer etc.), the results showed that PON1-192R allele was associated with a decreased risk in breast cancer (R vs Q: OR=0.605, 95% CI=0.378-0.967, $P_{heterogeneity}=0.000$; RR vs QQ: OR=0.494, 95% CI=0.275-0.888, $P_{heterogeneity}=0.002$; RQ vs QQ: OR=0.465, 95% CI=0.259-0.835, $P_{heterogeneity}=0.000$; and RR+RQ vs QQ: OR=0.485, 95% CI=0.274-0.857, $P_{heterogeneity}=0.000$), and associated with prostate cancer in homozygote (RR vs QQ: OR=0.475, 95% CI=0.251-0.897, $P_{heterogeneity}=0.001$) and recessive models (RR vs RQ+QQ: OR=0.379, 95% CI=0.169-0.853, $P_{heterogeneity}=0.000$), while an increased risk was identified in lymphoma (R vs Q: OR=1.537, 95% CI=1.246-1.896, $P_{heterogeneity}=0.944$; RR vs QQ: OR=2.987, 95% CI=1.861-4.795, $P_{heterogeneity}=0.350$; RR+RQ vs QQ: OR=1.354, 95% CI=1.021-1.796, $P_{heterogeneity}=0.824$; and RR vs RQ+QQ: OR=2.934, 95% CI=1.869-4.605, $P_{heterogeneity}=0.433$), and an increased risk in prostate cancer under heterozygote comparison (RQ vs QQ: OR=1.782, 95% CI=1.077-2.950, $P_{heterogeneity}=0.000$) and dominant models (RR+RQ vs QQ: OR=1.281, 95% CI=1.044-1.573, $P_{heterogeneity}=0.056$). When subgroup analysis that performed by the control source (hospital based or population based), a decreased risk of the overall cancers was revealed by homozygote (RR vs QQ: OR=0.601, 95% CI=0.366-0.987, $P_{heterogeneity}=0.000$) and dominant models (RR vs RQ+QQ: OR= 0.611, 95% CI=0.384-0.973, $P_{heterogeneity}=0.000$) in hospital based group. Stratifying by ethnicity, a significantly reduced risk of the overall cancers under allele contrast model (R vs Q: OR=0.788, 95% CI=0.626-0.993, $P_{heterogeneity}=0.000$) was uncovered in Caucasian. In summary, these findings suggested that PON1 Q192R polymorphism was associated with a reduced risk of the overall cancers, nevertheless, it might increase cancer susceptibility of prostate and lymphoma risk. Large well-designed epidemiological studies will be continued on this issue of interest.

Cadms/SynCAMs/Necls/TSLCs Interact with Multi-PDZ Domain Protein MUPP1 (Cadms/SynCAMs/Necls/TSLCs와 multi-PDZ domain protein MUPP1 단백질의 결합)

  • Jang, Won Hee;Jeong, Young Joo;Choi, Sun Hee;Kim, Sang-Jin;Urm, Sang-Hwa;Moon, Il Soo;Seog, Dae-Hyun
    • Journal of Life Science
    • /
    • v.24 no.12
    • /
    • pp.1276-1283
    • /
    • 2014
  • Cell adhesion molecules determine the cell-cell binding and the interactions between cells and extracellular signals. Cell-cell junctional complexes, which maintain the structural integrity of tissues, consist of more than 50 proteins including multi-PDZ domain protein 1 (MUPP1). MUPP1 contains 13 postsynaptic density-95/disks large/zonula occludens-1 (PDZ) domains and serves a scaffolding function for transmembrane proteins and cytoskeletal proteins or signaling proteins, but the mechanism how MUPP1 links and stabilizes the juxtamembrane proteins has not yet been elucidated. We used the yeast two-hybrid system to identify proteins that interact with PDZ domains of MUPP1. We found an interaction between MUPP1 and cell adhesion molecule 1 (Cadm1, also known as SynCAM1, Necl-2, or TSLC1). Cadm1 bound to the second PDZ domain of MUPP1. The carboxyl (C)-terminal end of Cadm1 has a type II PDZ-association motif (-Y-F-I) which was essential for the interaction with MUPP1 in the yeast two-hybrid assay. MUPP1 also bound to the C-terminal cytoplasmic tail region of other Cadm family members (Cadm2, Cadm3, and Cadm4). In addition, these protein-protein interactions were observed in the glutathione S-transferase (GST) pull-down assay and by co-immunoprecipitation. Anti-MUPP1 antibody co-immunoprecipitated Cadm1 and Cadm4 with MUPP1 from mouse brain extracts. These results suggest that MUPP1 could mediate interaction between Cadms and cytoskeletal proteins.

JSAP1 Interacts with Kinesin Light Chain 1 through Conserved Binding Segments (JSAP1과 Kinesin Light Chain 1의 결합 및 결합부위 규명)

  • Kim, Sang-Jin;Lee, Chul-Hee;Park, Hye-Young;Yea, Sung-Su;Jang, Won-Hee;Lee, Sang-Kyeong;Park, Yeong-Hong;Cha, Ok-Soo;Moon, Il-Soo;Seog, Dae-Hyun
    • Journal of Life Science
    • /
    • v.17 no.7 s.87
    • /
    • pp.889-895
    • /
    • 2007
  • A conventional kinesin, KIF5/kinesin-I, is composed of two kinesin heavy chains (KHCs) and two kinesin light chains (KLCs) and binds directly to microtubules. KIF5 motor mediates the transport of various membranous organelles, but the mechanism how they recognize and bind to a specific cargo has not yet been completely elucidated. Here, we used the yeast two-hybrid system to identify the neuronal protein(s) that interacts with the tetratricopeptide repeats (TRP) of KLCI and found a specific interaction with JNK/stress-activated protein kinase-associated protein 1 (JSAP1/JIPP3). The yeast two-hybrid assay demonstrated that the TRP 1,2 domain-containing region of KLCI mediated binding to the leucine zipper domain of JSAP1. JSAP1 also bound to the TRP region of lac2 but not to neuronal KIF5A, KIF5C and ubiquitous KIF5B in the yeast two-hybrid assay. In addition, these proteins showed specific interactions in the GST pull-down assay and by co-immunoprecipitation. KLCI and KIF5B interacted with GST-ISAP1 fusion proteins, but not with GST alone. An antibody to JSAPI specifically co-immunoprecipitated KIF5s associated with JSAP1 from mouse brain extracts. These results suggest that JSAP1, as KLC1 receptor, is involved in the KIF5 mediated transport.

Ferritin, an Iron Storage Protein, Associates with Kinesin 1 through the Cargo-binding Region of Kinesin Heavy Chains (KHCs) (철 저장 단백질 ferritin과 kinesin 1 결합 규명)

  • Jang, Won Hee;Jeong, Young Joo;Lee, Won Hee;Kim, Mooseong;Kim, Sang-Jin;Urm, Sang-Hwa;Moon, Il Soo;Seog, Dae-Hyun
    • Journal of Life Science
    • /
    • v.26 no.6
    • /
    • pp.698-704
    • /
    • 2016
  • The intracellular transport of organelles and protein complexes is mediated by kinesin superfamily proteins (KIFs). The first kinesin, kinesin 1, was identified as a molecular motor protein that moves various organelles and protein complexes along the microtubule rails in cells. Kinesin 1 is a tetramer of two heavy chains (KHCs, also called KIF5s) and two kinesin light chains (KLCs). KIF5s interact with many different proteins through their tail region, but their binding proteins have not yet been fully identified. To identify the interaction proteins for KIF5A, we performed yeast two-hybrid screening and found a specific interaction with ferritin heavy chain (Frt-h), which has a role in iron storage and detoxification. Frt-h bound to the amino acid residues between 800 and 940 of KIF5A and to other KIF5s in the yeast two-hybrid assay. The coiled-coil domain of Frt-h is essential for interaction with KIF5A. In addition, ferritin light chain (Frt-l) interacted with KIF5s in the yeast two-hybrid assay. In addition, these proteins showed specific interactions in the glutathione S-transferase (GST) pull-down assay. An antibody to KHC specifically co-immunoprecipitated Frt-h and Frt-l from mouse brain extracts. These results suggest the kinesin 1 motor protein may transport the ferritin complex in cells.