Browse > Article
http://dx.doi.org/10.5352/JLS.2007.17.7.889

JSAP1 Interacts with Kinesin Light Chain 1 through Conserved Binding Segments  

Kim, Sang-Jin (Departments of Biochemistry, Neurology, Inje University)
Lee, Chul-Hee (Department of Neorosurgery, College of Medicine, Gyeongsang National University)
Park, Hye-Young (Departments of Biochemistry, Inje University)
Yea, Sung-Su (Departments of Biochemistry, Inje University)
Jang, Won-Hee (Departments of Biochemistry, Inje University)
Lee, Sang-Kyeong (Departments of Biochemistry, Psychiatry, Inje University)
Park, Yeong-Hong (Departments of Biochemistry, Inje University)
Cha, Ok-Soo (Department of Physical Education, Jinju National University of Education)
Moon, Il-Soo (Departments of Anatomy, College of Medicine, Dongguk University)
Seog, Dae-Hyun (Departments of Biochemistry, Inje University)
Publication Information
Journal of Life Science / v.17, no.7, 2007 , pp. 889-895 More about this Journal
Abstract
A conventional kinesin, KIF5/kinesin-I, is composed of two kinesin heavy chains (KHCs) and two kinesin light chains (KLCs) and binds directly to microtubules. KIF5 motor mediates the transport of various membranous organelles, but the mechanism how they recognize and bind to a specific cargo has not yet been completely elucidated. Here, we used the yeast two-hybrid system to identify the neuronal protein(s) that interacts with the tetratricopeptide repeats (TRP) of KLCI and found a specific interaction with JNK/stress-activated protein kinase-associated protein 1 (JSAP1/JIPP3). The yeast two-hybrid assay demonstrated that the TRP 1,2 domain-containing region of KLCI mediated binding to the leucine zipper domain of JSAP1. JSAP1 also bound to the TRP region of lac2 but not to neuronal KIF5A, KIF5C and ubiquitous KIF5B in the yeast two-hybrid assay. In addition, these proteins showed specific interactions in the GST pull-down assay and by co-immunoprecipitation. KLCI and KIF5B interacted with GST-ISAP1 fusion proteins, but not with GST alone. An antibody to JSAPI specifically co-immunoprecipitated KIF5s associated with JSAP1 from mouse brain extracts. These results suggest that JSAP1, as KLC1 receptor, is involved in the KIF5 mediated transport.
Keywords
Kinesin; kinesin light chain; molecular motors; protein-protein interaction; adaptor proteins;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Stockinger, W., C. Brandes, D. Fasching, M. Hermann, M. Gotthardt, J. Herz, W. J. Schneider and J. Nimpf. 2000. The reelin receptor ApoER2 recruits JNK-interacting proteins-l and -2. J. Biol. Chem. 275, 25625-25632   DOI   ScienceOn
2 Hirokawa, N. and R. Takemura. 2005. Molecular motors and mechanisms of directional transport in neurons. Nat. Rev. Neurosci. 6, 201-214   DOI   ScienceOn
3 Takeda, S., H. Yamazaki, D. H. Seog, Y. Kanai, S. Terada and N. Hirokawa. 2000. Kinesin superfamily protein 3 (KIF3) motor transports fodrin-associating vesicles important for neurite building. J. Cell Biol. 148, 1255-1265   DOI   ScienceOn
4 Takino, T., M. Nakada, H. Miyamori, Y. Watanabe, T. Sato, D. Gantulga, K. Yoshioka, K. M. Yamada and H. Sato. 2005. JSAP1/JIP3 cooperates with focal adhesion kinase to regulate c-Jun N-terminal kinase and cell migration. J. Biol. Chem. 280, 37772-37781   DOI   ScienceOn
5 Vale, R. D. and R. J. Fletterick. 1997. The design plan of kinesin motors. Annu. Rev. Cell Dev. Biol. 13, 745-777   DOI   ScienceOn
6 Vale, R. D. 2003. The molecular motor toolbox fur intracellular transport. Cell 112, 467-480   DOI   ScienceOn
7 Verhey, K. J., D. Meyer, R. Deehan, J. Blenis, B. J. Schnapp, T. A. Rapoport and B. Margolis. 2001. Cargo of kinesin identified as JIP scaffolding proteins and associated signaling molecules. J. Cell Biol. 152, 959-970   DOI   ScienceOn
8 Yang, J. T., R. A. Laymon and L. S. Goldstein. 1989. A three-domain structure of kinesin heavy chain revealed by DNA sequence and microtubule binding analyses. Cell 56, 879-889   DOI   ScienceOn
9 Morrison, D. K. and R. J. Davis. 2003. Regulation of MAP kinase signaling modules by scaffold prate ins in mammals. Annu. Rev. Cell Dev. Biol. 19, 91-118   DOI   ScienceOn
10 Nonaka, S., Y. Tanaka, Y. Okada, S. Takeda, A. Harada, Y. Kanai, M. Kido and N. Hirokawa. 1998. Randomization of left-right asymmetry due to loss of nodal cilia generating leftward flow of extraembryonic fluid in mice lacking KIF3B motor protein, Cell. 95, 829-837   DOI   ScienceOn
11 Rahman, A., D. S. Friedman and L. S. Goldstein. 1998. Two kinesin light chain genes in mice. Identification and characterization of the encoded proteins. J. Biol. Chem. 273, 15395-15403   DOI   ScienceOn
12 Sambrook, J., E. F. Fritsch and T. Maniatis. 1989. Molecular cloning: a laboratory manual. Cold Spring Habor Laboratory, Cold Spring Habor, New York
13 Scholey, J. M., J. Heuser, J. T. Yang and L. S. Goldstein. 1989. Identification of globular mechanochemical heads of kinesin. Nature 338, 355-357   DOI   ScienceOn
14 Seog, D. H., D. H. Lee and S. K. Lee. 2004. Molecular Motor Proteins of the Kinesin superfamily proteins (KIFs): Structure, Cargo and Disease. J. Korean Medical Science 19, 1-7   DOI   ScienceOn
15 Setou, M., T. Nakagawa, D. H. Seog and N. Hirokawa. 2000. Kinesin superfamily motor protein KIF17 and mLin-10 in NMDA receptor-containing vesicle transport. Science 288, 1796-1802   DOI   ScienceOn
16 Setou, M., D. H. Seog, Y. Tanaka, Y. Kanai, Y. Takei, M. Kawagishi and N. Hirokawa. 2002. Glutamate-receptor-interacting protein GRIP1 directly steers kinesin to dendrites. Nature 417, 83-87   DOI   ScienceOn
17 Stenoien, D. L. and S. T. Brady. 1997. Immunochemical analysis of kinesin light chain function. Mol. Biol. Cell 8, 675-689   DOI
18 Kamal, A, A Almenar-Queralt, J. F. LeBlanc, E. A. Roberts and L. S. Goldstein. 2001. Kinesin-mediated axonal transport of a membrane compartment containing beta-secretase and presenilin-1 requires APP. Nature 414, 643-648   DOI   ScienceOn
19 Kamal, A, G. B. Stokin, Z. Yang, C. H. Xia and L. S. Goldstein. 2000. Axonal transport of amyloid precursor protein is mediated by direct binding to the kinesin light chain subunit of kinesin-I. Neuron 28, 449-459   DOI   ScienceOn
20 Kanai, Y., Y. Okada, Y. Tanaka, A Harada, S. Terada and N. Hirokawa. 2000. KIF5C, A novel neuronal kinesin enriched in motor neurons. J. Neurosci. 20, 6374-6384   DOI
21 Konecna, A., R. Frischknecht, J. Kinter, A. Ludwig, M. Steuble, V. Meskenaite, M. Indermuhle, M. Engel, C. Cen, J. M. Mateos, P. Streit and P. Sonderegger. 2006. Calsyntenin-1 docks vesicular cargo to kinesin-1. Mol. Biol. Cell 8, 3651-3663
22 Karcher, R. L., S. W. Deacon and V. I. Gelfand. 2002. Motor-cargo interactions: the key to transport specificity. Trends Cell Biol. 12, 21-27   DOI   ScienceOn
23 Kelkar, N., M. H. Delmotte, C. R. Weston, T. Barrett, B. J. Sheppard, R. A Flavell and R. J. Davis. 2003. Morphogenesis of the telencephalic commissure requires scaffold protein JNK-interacting protein 3 (JIP3). Proc. Natl. Acad. Sci. USA. 100, 9843-9848   DOI   ScienceOn
24 Kelkar, N., S. Gupta, M. Dickens and R. J. Davis. 2000. Interaction of a mitogen-activated protein kinase signaling module with the neuronal protein JIP3. Mol. Cell Biol. 20, 1030-1043   DOI   ScienceOn
25 Meng, Y. X., G. W. Wilson, M. C. Avery, C. H. Varden and R. Balczon. 1997. Suppression of the expression of a pancreatic beta-cell form of the kinesin heavy chain by antisense oligonucleotides inhibits insulin secretion from primary cultures of mouse beta-cells. Endocrinology 138, 1979-1987   DOI   ScienceOn
26 Miki, H., M. Setou, K. Kaneshiro and N. Hirokawa. 2001. All kinesin superfamily protein, KIF, genes in mouse and human. Proc. Natl. Acad. Sci. USA. 98, 7004-7011   DOI   ScienceOn
27 Blatch, G. L. and M. Lassle. 1999. The tetratricopeptide repeat: a structural motif mediating protein-protein interactions. Bioessays 21, 932-939   DOI   ScienceOn
28 Bowman, A. B., A. Kamal, B. W. Ritchings, A. V. Philp, M. McGrail, J. G. Gindhart and L. S. Goldstein. 2000. Kinesin-dependent axonal transport is mediated by the sunday driver (SYD) protein. Cell 103, 583-594   DOI   ScienceOn
29 Gauger, A. K. and L. S. Goldstein. 1993. The Drosophila kinesin light chain. Primary structure and interaction with kinesin heavy chain. J. Biol. Chem. 268, 13657-13666
30 Byrd, D. T., M. Kawasaki, M. Walcoff, N. Hisamoto, K. Matsumoto and Y. Jin. 2001. UNC-16, a JNK-signaling scaffold protein, regulates vesicle transport in C. elegans. Neuron 32, 787-800   DOI   ScienceOn
31 Gindhart, J. C. Jr. and L. S. Goldstein. 1996. Tetratrico peptide repeats are present in the kinesin light chain. Trends Biochem. Sci. 21, 52-53   DOI   ScienceOn
32 Graves, M. R. and D. Barford. 1999. Topological characteristics of helical repeat proteins. Curr. Opin. Struct. Biol. 9, 383-389   DOI   ScienceOn
33 Ha, H Y., I. H Cho, K. W. Lee, K. W. Lee, J. Y. Song, K. S. Kim, Y. M. Yu, J. K. Lee, J. S. Song, S. D. Yang, H. S. Shin and P. L. Han. 2005. The axon guidance defect of the telencephalic commissures of the JSAP1-deficient brain was partially rescued by the transgenic expression of JIP1. Dev. Biol. 277, 184-199   DOI   ScienceOn
34 Hirokawa, N. 1998. Kinesin and dynein superfamily proteins and the mechanism of organelle transport. Science 279, 519-526   DOI   ScienceOn
35 Ito, M. K., Yoshioka, M. Akechi, S. Yamashita, N. Takamatsu, K. Sugiyama, M. Hibi, Y. Nakabeppu, T. Shiba and K. I. Yamamoto. 1999. JSAP1, a novel jun N-terminal protein kinase (JNK)-binding protein that functions as a Scaffold factor in the JNK signaling pathway. Mol. Cell Biol. 19, 7539-7548   DOI
36 Aizawa, H., Y. Sekine, R. Takemura, Z. Zhang, M. Nangaku and N. Hirokawa. 1992. Kinesin family in murine central nervous system. J. Cell Biol. 119, 1287-1296   DOI   ScienceOn