• Title/Summary/Keyword: Brain

Search Result 11,059, Processing Time 0.043 seconds

Surgical Outcomes in Patients with Simultaneous Traumatic Brain and Torso Injuries in a Single Regional Trauma Center over a 5-Year Period

  • Yun, Jung-Ho
    • Journal of Trauma and Injury
    • /
    • v.34 no.4
    • /
    • pp.270-278
    • /
    • 2021
  • Purpose: The purpose of the study is to analyze the results of surgical treatment of patients with brain and torso injury for 5 years in a single regional trauma center. Methods: We analyzed multiple trauma patients who underwent brain surgery and torso surgery for chest or abdominal injury simultaneously or sequentially among all 14,175 trauma patients who visited Dankook University Hospital Regional Trauma Center from January 2015 to December 2019. Results: A total of 25 patients underwent brain surgery and chest or abdominal surgery, with an average age of 55.4 years, 17 men and eight women. As a result of surgical treatment, there were 14 patients who underwent the surgery on the same day (resuscitative surgery), of which five patients underwent surgery simultaneously, four patients underwent brain surgery first, and one patient underwent chest surgery first, four patients underwent abdominal surgery first. Among the 25 treated patients, the 10 patients died, which the cause of death was five severe brain injuries and four hemorrhagic shocks. Conclusions: In multiple damaged patients require both torso surgery and head surgery, poor prognosis was associated with low initial Glasgow Coma Scale and high Injury Severity Score. On the other hand, patients had good prognosis when blood pressure was maintained and operation for traumatic brain injury was performed first. At the same time, patients who had operation on head and torso simultaneously had extremely low survival rates. This may be associated with secondary brain injury due to low perfusion pressure or continuous hypotension and the traumatic coagulopathy caused by massive bleeding.

Manganese-Enhanced MRI Reveals Brain Circuits Associated with Olfactory Fear Conditioning by Nasal Delivery of Manganese

  • Yang, Ji-ung;Chang, Yongmin;Lee, Taekwan
    • Investigative Magnetic Resonance Imaging
    • /
    • v.26 no.2
    • /
    • pp.96-103
    • /
    • 2022
  • Purpose: The survival of organisms critically depends on avoidance responses to life-threatening stimuli. Information about dangerous situations needs to be remembered to produce defensive behavior. To investigate underlying brain regions to process information of danger, manganese-enhanced MRI (MEMRI) was used in olfactory fear-conditioned rats. Materials and Methods: Fear conditioning was conducted in male Sprague-Dawley rats. The animals received nasal injections of manganese chloride solution to monitor brain activation for olfactory information processing. Twenty-four hours after manganese injection, rats were exposed to electric foot shocks with odor cue for one hour. Control rats were exposed to the same odor cue without foot shocks. Forty-eight hours after the conditioning, rats were anesthetized and their brains were scanned with 9.4T MRI. Acquired images were processed and statistical analyses were performed using AFNI. Results: Manganese injection enhanced brain areas involved in olfactory information pathways in T1 weighted images. Rats that received foot shocks showed higher brain activation in the central nucleus of the amygdala, septum, primary motor cortex, and preoptic area. In contrast, control rats displayed greater signals in the orbital cortex and nucleus accumbens. Conclusion: Nasal delivery of manganese solution enhanced olfactory signal pathways in rats. Odor cue paired with foot shocks activated amygdala, the central brain region in fear, and related brain circuits. Use of MEMRI in fear conditioning provides a reliable monitoring technique of brain activation for fear learning.

Characteristics of Focused Ultrasound Mediated Blood-Brain Barrier Opening in Magnetic Resonance Images

  • Kyung Won Chang;Seung Woo Hong;Won Seok Chang;Hyun Ho Jung;Jin Woo Chang
    • Journal of Korean Neurosurgical Society
    • /
    • v.66 no.2
    • /
    • pp.172-182
    • /
    • 2023
  • Objective : The blood-brain barrier (BBB) is an obstacle for molecules to pass through from blood to the brain. Focused ultrasound is a new method which temporarily opens the BBB, which makes pharmaceutical delivery or removal of neurodegenerative proteins possible. This study was demonstrated to review our BBB opening procedure with magnetic resonance guided images and find specific patterns in the BBB opening. Methods : In this study, we reviewed the procedures and results of two clinical studies on BBB opening using focused ultrasound regarding its safety and clinical efficacy. Magnetic resonance images were also reviewed to discover any specific findings. Results : Two clinical trials showed clinical benefits. All clinical trials demonstrated safe BBB opening, with no specific side effects. Magnetic resonance imaging showed temporary T1 contrast enhancement in the sonication area, verifying the BBB opening. Several low-signal intensity spots were observed in the T2 susceptibility-weighted angiography images, which were also reversible and temporary. Although these spots can be considered as microbleeding, evidence suggests these are not ordinary microbleeding but an indicator for adequate BBB opening. Conclusion : Magnetic resonance images proved safe and efficient BBB opening in humans, using focused ultrasound.

Revolutionizing Brain Tumor Segmentation in MRI with Dynamic Fusion of Handcrafted Features and Global Pathway-based Deep Learning

  • Faizan Ullah;Muhammad Nadeem;Mohammad Abrar
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.18 no.1
    • /
    • pp.105-125
    • /
    • 2024
  • Gliomas are the most common malignant brain tumor and cause the most deaths. Manual brain tumor segmentation is expensive, time-consuming, error-prone, and dependent on the radiologist's expertise and experience. Manual brain tumor segmentation outcomes by different radiologists for the same patient may differ. Thus, more robust, and dependable methods are needed. Medical imaging researchers produced numerous semi-automatic and fully automatic brain tumor segmentation algorithms using ML pipelines and accurate (handcrafted feature-based, etc.) or data-driven strategies. Current methods use CNN or handmade features such symmetry analysis, alignment-based features analysis, or textural qualities. CNN approaches provide unsupervised features, while manual features model domain knowledge. Cascaded algorithms may outperform feature-based or data-driven like CNN methods. A revolutionary cascaded strategy is presented that intelligently supplies CNN with past information from handmade feature-based ML algorithms. Each patient receives manual ground truth and four MRI modalities (T1, T1c, T2, and FLAIR). Handcrafted characteristics and deep learning are used to segment brain tumors in a Global Convolutional Neural Network (GCNN). The proposed GCNN architecture with two parallel CNNs, CSPathways CNN (CSPCNN) and MRI Pathways CNN (MRIPCNN), segmented BraTS brain tumors with high accuracy. The proposed model achieved a Dice score of 87% higher than the state of the art. This research could improve brain tumor segmentation, helping clinicians diagnose and treat patients.

Arterial Spin Labeling Magnetic Resonance Imaging in Healthy Adults: Mathematical Model Fitting to Assess Age-Related Perfusion Pattern

  • Ying Hu;Rongbo Liu;Fabao Gao
    • Korean Journal of Radiology
    • /
    • v.22 no.7
    • /
    • pp.1194-1202
    • /
    • 2021
  • Objective: To investigate the age-dependent changes in regional cerebral blood flow (CBF) in healthy adults by fitting mathematical models to imaging data. Materials and Methods: In this prospective study, 90 healthy adults underwent pseudo-continuous arterial spin labeling imaging of the brain. Regional CBF values were extracted from the arterial spin labeling images of each subject. Multivariable regression with the Akaike information criterion, link test, and F test (Ramsey's regression equation specification error test) was performed for 7 models in every brain region to determine the best mathematical model for fitting the relationship between CBF and age. Results: Of all 87 brain regions, 68 brain regions were best fitted by cubic models, 9 brain regions were best fitted by quadratic models, and 10 brain regions were best fitted by linear models. In most brain regions (global gray matter and the other 65 brain regions), CBF decreased nonlinearly with aging, and the rate of CBF reduction decreased with aging, gradually approaching 0 after approximately 60. CBF in some regions of the frontal, parietal, and occipital lobes increased nonlinearly with aging before age 30, approximately, and decreased nonlinearly with aging for the rest of life. Conclusion: In adults, the age-related perfusion patterns in most brain regions were best fitted by the cubic models, and age-dependent CBF changes were nonlinear.

Gut-Brain Connection: Microbiome, Gut Barrier, and Environmental Sensors

  • Min-Gyu Gwak;Sun-Young Chang
    • IMMUNE NETWORK
    • /
    • v.21 no.3
    • /
    • pp.20.1-20.18
    • /
    • 2021
  • The gut is an important organ with digestive and immune regulatory function which consistently harbors microbiome ecosystem. The gut microbiome cooperates with the host to regulate the development and function of the immune, metabolic, and nervous systems. It can influence disease processes in the gut as well as extra-intestinal organs, including the brain. The gut closely connects with the central nervous system through dynamic bidirectional communication along the gut-brain axis. The connection between gut environment and brain may affect host mood and behaviors. Disruptions in microbial communities have been implicated in several neurological disorders. A link between the gut microbiota and the brain has long been described, but recent studies have started to reveal the underlying mechanism of the impact of the gut microbiota and gut barrier integrity on the brain and behavior. Here, we summarized the gut barrier environment and the 4 main gut-brain axis pathways. We focused on the important function of gut barrier on neurological diseases such as stress responses and ischemic stroke. Finally, we described the impact of representative environmental sensors generated by gut bacteria on acute neurological disease via the gut-brain axis.

Clinical outcomes of traumatic brain injury dogs underwent CT or MRI

  • Unghui Kim;Woo-Jin Song
    • Korean Journal of Veterinary Service
    • /
    • v.47 no.2
    • /
    • pp.101-105
    • /
    • 2024
  • Three dogs (7-year-old, neutered male Chihuahua; case 1, 1-year-old, spayed female mixed breed; case 2, 10-month-old, female Maltese; case 3) were referred to Jeju Veterinary Medicine Teaching Hospital for traumatic brain injury. All three patients exhibited abnormal neurological symptoms. The patients were diagnosed through medical history obtained from their caregivers and through computed tomography (CT) or magnetic resonance imaging (MRI) scans. Structural brain abnormalities were observed in two dogs through CT scans and in one dog through MRI. Decompression therapy with mannitol was administered to all three dogs. Case 1, which showed CT findings of pulmonary hemorrhage but no significant brain injury, and case 2, which had mild brain damage on CT imaging, showed improvement in neurological symptoms and gait abnormalities after decompression therapy. However, case 3, which showed suspected brain hemorrhage and brain edema on MRI, did not respond to decompression therapy and was euthanized one month later. Imaging evaluation through CT or MRI in dogs with traumatic brain injury can assist clinical veterinarians in assessing the prognosis of patients.

The Development of the Brain-based Analysis Framework for the Evaluation of Teaching-Learning Program in Science (과학 교수-학습 프로그램의 평가를 위한 두뇌기반 분석틀의 개발)

  • Lee, Jun-Ki;Lee, Il-Sun;Kwon, Yong-Ju
    • Journal of The Korean Association For Science Education
    • /
    • v.30 no.5
    • /
    • pp.647-667
    • /
    • 2010
  • The purpose of this study was to develop a brain-based analysis framework for evaluating teachinglearning program in science. To develop the framework, this study categorized educational constructs of the teachinglearning programs into one of three teaching-learning factors: cognition, motive, and emotion, using previous studies on science program. Ninety-three articles on the brain functions associated with science program were analyzed to extract brain activation regions related to the three educational constructs. After delineating the brain activation regions, we designed the brain function map, "the CORE Brain Map." Based on this brain map, we developed a brain-based analysis framework for evaluating science teaching-learning program using R & D processes. This framework consists of the brain regions, the bilateral dorsolateral prefrontal cortex, the bilateral ventrolateral prefrontal cortex, the bilateral orbitofrontal cortex, the anterior cingulate gyrus, the bilateral parietal cortex, the bilateral temporal cortex, the bilateral occipital cortex, the bilateral hippocampus, the bilateral amygdala, the bilateral nucleus accumbens, the bilateral striatum and the midbrain regions. These brain regions are associated with the aforementioned three educational factors; cognition, motivation, and emotion. The framework could be applied to the analysis and diagnosis of various teaching and learning programs in science.

Vector-Mediated Delivers of $^{125}I$-labeled Opioid Peptide, $[Lys^7$]dermorphin (K7DA), through the Blood-Brain Barrier (진통 펩타이드 K7DA의 혈액-뇌 관문을 통한 Vector-Mediated Delivery)

  • 강영숙
    • Biomolecules & Therapeutics
    • /
    • v.5 no.1
    • /
    • pp.53-58
    • /
    • 1997
  • $[Lys^7$]dermorphin, abbreviated K7DA, which has structural features similar to a metabolically stable $\mu$-opioid peptide agonist $[D-Arg^2, Lys^4$]dermorphin analogue (DALDA), but is intrinsically more potent with respect to binding to the $\mu$-opioid peptide receptor. The present studies report on attempts to enhance brain uptake of systemically administered K7DA by conjugation to a complex of streptavidin (SA) and the OX26 murine monoclonal antibody to the rat transferrin receptor, which undergoes receptor-mediated transcytosis through the blood-brain barrier (BBB). SA-OX26 conjugate mediates BBB transport of biotinylated therapeutics. The K7DA is monobiotinylated at the $\varepsilon$-amino group of the $[Lys^7$] residue with cleavable linker using NHS-SS-biotin. The brain uptake of $^{125}I$ labeled biotinylated K7DA ($^{125}I$-bio-SSa-K7DA) was very small and rapidly metabolized after intravenous injection. The brain uptake, expressed as percent of injected dose delivered per gram of brain, of the $^{125}I$-bio-55-K7DA bound to the SA-OX26 conjugate $^{125}I$-bio-SS-K7DA/SA-OX26) was 0.14$\pm$0.01, a level that is 2-fold greater than the brain uptake of morphine. The cleavability of the disulfide linker in vivo in rat plasma and brain was assessed with gel filtration HPLC and intravenous injection of labeled opioid chimeric peptides. The disulfide linker is stable in plasma in vivo but is cleaved in rat brain in vivo. In conclusion, these studies show that delivery of these potential opioid peptides to the brain may be improved by coupling them to vector-mediated BBB drug delivery system.

  • PDF

Value of Repeat Brain Computed Tomography in Children with Traumatic Brain Injury (소아 두부외상 환자에서의 반복적인 두부 CT 검사의 유용성)

  • Jo, Ho jun;Lim, Yong Su;Kim, Jin Joo;Cho, Jin Seong;Hyun, Sung Youl;Yang, Hyuk Jun;Lee, Gun
    • Journal of Trauma and Injury
    • /
    • v.28 no.3
    • /
    • pp.149-157
    • /
    • 2015
  • Purpose: Traumatic brain injury (TBI) is the most common cause of pediatric trauma patients came to the emergency department. Without guidelines, many of these children underwent repeat brain computed tomography (CT). The purpose of this study was to evaluate the value of repeat brain CT in children with TBI. Methods: We conducted a retrospective study of TBI in children younger than 19 years of age who visited the emergency department (ED) from January 2011 to December 2012. According to the Glasgow Coma Scale (GCS) and Pediatric Glasgow Coma Scale score of the patients, study population divided in three groups. Clinical data collected included age, mechanism of injury, type of TBI, and outcome. Results: A Total 83 children with TBI received repeat brain CT. There were no need for neurosurgical intervention in mild TBI (GCS score 13-15) group who underwent routine repeat CT. 4 patients of mild TBI group, received repeat brain CT due to neurological deterioration, and one patient underwent neurosurgical intervention. Routine repeat CT identified 12 patients with radiographic progression. One patient underwent neurosurgical intervention based on the second brain CT finding, who belonged to the moderate TBI (GCS score 9-12) group. Conclusion: Our study showed that children with mild TBI can be observed without repeat brain CT when there is no evidence of neurologic deterioration. Further study is needed for establish indication for repetition of CT scan in order to avoid unnecessary radiation exposure of children.

  • PDF