• Title/Summary/Keyword: Brain, CT

Search Result 581, Processing Time 0.023 seconds

Noise and Image Quality Analysis of Brain CT Examination (두부 CT검사에서의 노이즈 및 화질분석)

  • Choi, Seok-yoon;Im, In-chul
    • Journal of radiological science and technology
    • /
    • v.42 no.4
    • /
    • pp.279-284
    • /
    • 2019
  • The purpose of this study was to find the best protocol for balance of image quality and dose in brain CT scan. Images were acquired using dual-source CT and AAPM water phantom, noise and dose were measured, and effective dose was calculated using computer simulation program ALARA(S/W). In order to determine the ratio of image quality and dose by each protocol, FOM (figure of merits) equation with normalized DLP was presented and the result was calculated. judged that the ratio of image quality and dose was excellent when the FOM maximized. Experimental results showed that protocol No. 21(120 kVp, 10 mm, 1.5 pitch) was the best, the organ with the highest effective dose was the brain(33.61 mGy). Among organs with high radiosensitivity, the thyroid gland was 0.78 mGy and breast 0.05 mGy. In conclusion, the optimal parameters and the organ dose in the protocol were also presented from the experiment, It may be helpful to clinicians who want to know the protocol about the optimum state of image quality and dose.

Comparison of Lens Dose in accordance with Bismuth shielding and Patient position in Brain perfusion CT (Brain Perfusion CT에서 Bismuth 차폐와 환자의 자세 변화에 따른 수정체 선량 비교 연구)

  • Gang, Eun Bo
    • Journal of the Korean Society of Radiology
    • /
    • v.12 no.1
    • /
    • pp.47-52
    • /
    • 2018
  • Brain perfusion CT scanning is often employed usefully in clinical conditions as it accurately and promptly provides information about the perfusion state of patients having acute ischemic stroke with a lot of time constraints and allows them to receive proper treatment. Despite those strengths of it, it also has a serious weakness that Lens may be exposed to a lot of dose of radiation in it. In this study, as a way to reduce the dose of radiation to Lens in brain perfusion CT scanning, this researcher conducted an experiment with Bismuth shielding and change of patients' position. TLD (TLD-100) was placed on both lens using the phantom (PBU-50), and then, in total 4 positions, parallel to IOML, parallel to IOML (Bismuth shielding), parallel to SOML, and parallel to SOML (Bismuth shielding), brain perfusion scanning was done 5 times for each position, and dose to Lens were measured. Also, to examine how the picture quality changed in different positions, 4 areas of interest were designated in 4 spots, and then, CT number and noise changes were measured and compared. According to the results of conducting one-way ANOVA on the doses measured, as the significance probability was found to be 0.000, so there was difference found in the doses of radiation to crystalline lenses. According to the results of Duncan's post-hoc test, with the scanning of being parallel to IOML as the reference, the reduction of 89.16% and 89.66% was observed in the scanning of being parallel to SOML and that of being parallel to SOML (Bismuth shielding) respectively, so the doses to Lens reduced significantly. Next, in the scanning of being parallel to IOML (Bismuth shielding), the reduction of 37.12% was found. According to the results, reduction in the doses of radiation was found the most significantly both in the scanning of being parallel to SOML and that of being parallel to SOML (Bismuth shielding). With the limit of the equivalent dose to Lens as the reference, this researcher conducted comparison with the dose to occupational exposure and dose to Public exposure in the scanning of being parallel to IOML and found 39.47% and 394.73% respectively; however in the scanning of being parallel to SOML (Bismuth shielding), considerable reduction was found as 4.08% and 40.8% respectively. According to the results of evaluation on picture quality, every image was found to meet the evaluative standards of phantom scanning in terms of the measurement of CT numbers and noise. In conclusion, it would be the most useful way to reduce the dose of radiation to Lens to use shields in brain perfusion CT scanning and adjust patients' position so that their lens will not be in the field of radiation.

The Evaluation of Eye Dose and Image Quality According to The New Tube Current Modulation and Shielding Techniques in Brain CT (두부 CT에서 차폐기법과 새로운 관전류변조기법에 따른 눈의 선량과 화질평가)

  • Kwon, Soonmu;Kim, Jungsu
    • Journal of the Korean Society of Radiology
    • /
    • v.9 no.5
    • /
    • pp.279-285
    • /
    • 2015
  • The eye of human is a radiation sensitive organ and this organ should be shielded from radiation exposure during brain CT procedures. In the brain CT procedures, bismuth protector using to reduce the radiation exposure dose for eye. But protecting the bismuth always accompanies problem of the image quality reduction including artifact. This study aim is the eye radiation exposure dose and image quality evaluation of the new tube current modulation such as new organ based-tube current modulation, longitudinal-TCM, angular-TCM between shielding scan technique using bismuth and lead glasses. As a result, radiation dose of eye is reduced 25.88% in new OB TCM technique then reference scan technique and SNR new OB TCM is 6.05 higher than bismuth shielding scan technique and lower than reference scan technique. In clinical brain CT, new OB TCM technique will contribute to reduction of radiation dose for eye without decrease of image quality.

The Terminal and Internal Hairpin Loops of the ctRNA of Plasmid pJB01 Play Critical Roles in Regulating Copy Number

  • Kim, Sam Woong;Jeong, In Sil;Jeong, Eun Ju;Tak, Je Il;Lee, John Hwa;Eo, Seong Kug;Kang, Ho Young;Bahk, Jeong Dong
    • Molecules and Cells
    • /
    • v.26 no.1
    • /
    • pp.26-33
    • /
    • 2008
  • The plasmid pJB01, a member of the pMV158 family isolated from Enterococcus faecium JC1, contains three open reading frames, copA, repB, and repC. Plasmids included in this family produce counter-transcribed RNA (ctRNA) that contributes to copy number control. The pJB01 ctRNA, a transcript which consists of 54 nucleotides (nts), is encoded on the opposite strand from the copA/repB intergenic region and partially overlaps an atypical ribosome binding site (ARBS) for repB. The ARBS is integrated by the two underlined conserved regions: 5'-TTTTTGTNNNNTAANNNNNNNNNATG-3', and the ctRNA is complementary only to the 5' conserved sequence 5'-TTTTTGT-3'. This complementary sequence is located at a distance from the terminal loop of the ctRNA secondary structure. The ctRNA structure predicted by the mfold program suggests the possible generation of a terminal and an internal hairpin loop. The amount of in vitro translation product of repB mRNA was inversely proportional to the ctRNA concentration. Mutations in the terminal and internal hairpin loops of the ctRNA had inhibitory effects on its binding to the target mRNA. We propose that the intact structures of the terminal and internal hairpin loops, respectively, play important roles in forming the initial kissing and extending complexes between the ctRNA and target mRNA and that these regulate the copy number of this plasmid.

A Comparative Study of SPECT, q-EEG and CT in Patients with Mild, Acute Head Trauma (경미한 급성 두부외상환자에서 SPECT, q-EEG 및 CT의 비교)

  • Lee, Suk-Ho;Kim, Jin-Seok;Moon, Hee-Seung;Lee, Sung-Ku;Kim, So-Yon;Kim, Young-Jung;Park, Byung-Yik;Lee, Gwon-Jeon;Kim, Kap-Deuk;Kim, Ho-Joeng;Cho, Kyeung-Hyeung;Seol, Hyun-Uk
    • The Korean Journal of Nuclear Medicine
    • /
    • v.27 no.2
    • /
    • pp.165-169
    • /
    • 1993
  • Functional cerebral impairments have been verified objectively by brain SPECT and q-EEG (quantitative electroencephalography). Microcerebral circulatory defects without anatomical changes can-not be detected by the brain CT or MRI. Brain SPECT using $^{99m}Tc$-HMPAO (Hexamethyl propyleneamine oxime) as a key radioisotope may be accepted as the useful method for identifying functional cerebral impairments. We studied 25 patients with mild head trauma to define whether the SPECT was helpful in detecting cerebral impairment. Results were as follows: The SPECT was positive in 23 patients out of 25, q-EEG positive in 16 patients and brain CT was positive in 3 cases. SPECT and q-EEG were more sensitive than CT, SPECT would be more useful method than brain CT to investigate cerebral function after head injury.

  • PDF

A Study on the Shielding of Orbit by 3D Printed Filament in Brain CT (Brain CT검사 시 3D프린터 필라멘트에 따른 수정체 차폐 연구)

  • Choi, Woo Jeon;Kim, Dong Hyun
    • Journal of the Korean Society of Radiology
    • /
    • v.15 no.2
    • /
    • pp.101-108
    • /
    • 2021
  • The CT can accurately present the anatomical structure of an organ in the human body, and the resolution of the image is excellent. On Brain CT examination, the radiation sensitivity of the orbit is high and it is subject to many exposure effects. To reduce exposure dose of lens, this study compares change of exposure dose and shielding rate about non-shielding and shielding in a way of using two shielding materials, bismuth and tungsten. In this study, we used bismuth and tungsten filament as shielding materials made by 3D printing to measure the exposure dose according to the materials thickness and each of slices. To compare each shielding rate, 1 mm to 5 mm of two materials was measured with the head phantom fixed and the Magicmax universal dosimeter placed on the eye when the shielding material is not placed, and the shielding material is placed on it. In the 1 mm thick filament, the bismuth filament showed 26.8% and the tungsten filament showed 43.1% shielding rate. Therefore, tungsten presents much greater shielding effect than bismuth.

Development of a Brain Phantom for Multimodal Image Registration in Radiotherapy Treatment Planning

  • H. S. Jin;T. S. Suh;R. H. Juh;J. Y. Song;C. B. Y. Choe;Lee, H .G.;C. Kwark
    • Proceedings of the Korean Society of Medical Physics Conference
    • /
    • 2002.09a
    • /
    • pp.450-453
    • /
    • 2002
  • In radiotherapy treatment planning, it is critical to deliver the radiation dose to tumor and protect surrounding normal tissue. Recent developments in functional imaging and radiotherapy treatment technology have been raising chances to control tumor saving normal tissues. A brain phantom which could be used for image registration technique of CT-MR and CT-SPECT images using surface matching was developed. The brain phantom was specially designed to obtain imaging dataset of CT, MR, and SPECT. The phantom had an external frame with 4 N-shaped pipes filled with acryl rods, Pb rods for CT, MR, and SPECT imaging, respectively. 8 acrylic pipes were inserted into the empty space of the brain phantom to be imaged for geometric evaluation of the matching. For an optimization algorithm of image registration, we used Downhill simplex algorithm suggested as a fast surface matching algorithm. Accuracy of image fusion was assessed by the comparison between the center points of the section of N-shaped bars in the external frame and the inserted pipes of the phantom and minimized cost functions of the optimization algorithm. Technique with partially transparent, mixed images using color on gray was used for visual assessment of the image registration process. The errors of image registration of CT-MR and CT-SPECT were within 2mm and 4mm, respectively. Since these errors were considered within a reasonable margin from the phantom study, the phantom is expected to be used for conventional image registration between multimodal image datasets..

  • PDF

Automatic Image Segmention of Brain CT Image (뇌조직 CT 영상의 자동영상분할)

  • 유선국;김남현
    • Journal of Biomedical Engineering Research
    • /
    • v.10 no.3
    • /
    • pp.317-322
    • /
    • 1989
  • In this paper, brain CT images are automatically segmented to reconstruct the 3-D scene from consecutive CT sections. Contextual segmentation technique was applied to overcome the partial volume artifact and statistical fluctuation phenomenon of soft tissue images. Images are hierarchically analyzed by region growing and graph editing techniques. Segmented regions are discriptively decided to the final organs by using the semantic informations.

  • PDF

The Use of Brain Computer Tomography Examination with Mild Traumatic Brain Injury in Pediatrics (일개 대학병원에서 경험한 소아의 경증 두부 외상에서 Brain CT 측정 및 효용성)

  • Kim, Ha Kyung;Kim, Jin Joo;Cho, Jin Seong;Jang, Jae Ho;Yang, Hyuk Jun;Lee, Gun
    • Journal of Trauma and Injury
    • /
    • v.27 no.3
    • /
    • pp.63-70
    • /
    • 2014
  • Purpose: In children, mild traumatic brain injuries (TBI) account for 70~90% of head injuries. Without guidelines, many of these children may be exposed to excess radiation due to unnecessary imaging. The purpose of this study was to evaluate the impact of a mild TBI guideline in imaging of pediatric patients. Methods: The medical records of all children who had head computed tomography and were admitted to our hospital with a TBI with Pediatric Glasgow Coma Scale and Glasgow Coma Scale of 14 to 15 were retrospectively reviewed and compared with PECARN Rule. Results: A total of 1260 children were included and all children checked with head computed tomography. 61 pediatrics had CT positive and presented skull fracture 40, hemorrhage 8, hemorrhagic contusion 7, and diffuse axonal injury 1. Also, 4 patients diagnosed both skull fracture and brain haemorrhage and 1 patient diagnosed both haemorrhage and haemorrhagic contusion. Conclusion: There are many pediatric traumatic patients who exposed to radiation due to CT. But, the most of results were negative. So, consider to follow the CT guideline for children and many do not require brain CT.

Feasibility Study of CNN-based Super-Resolution Algorithm Applied to Low-Resolution CT Images

  • Doo Bin KIM;Mi Jo LEE;Joo Wan HONG
    • Korean Journal of Artificial Intelligence
    • /
    • v.12 no.1
    • /
    • pp.1-6
    • /
    • 2024
  • Recently, various techniques are being applied through the development of medical AI, and research has been conducted on the application of super-resolution AI models. In this study, evaluate the results of the application of the super-resolution AI model to brain CT as the basic data for future research. Acquiring CT images of the brain, algorithm for brain and bone windowing setting, and the resolution was downscaled to 5 types resolution image based on the original resolution image, and then upscaled to resolution to create an LR image and used for network input with the original imaging. The SRCNN model was applied to each of these images and analyzed using PSNR, SSIM, Loss. As a result of quantitative index analysis, the results were the best at 256×256, the brain and bone window setting PSNR were the same at 33.72, 35.2, and SSIM at 0.98 respectively, and the loss was 0.0004 and 0.0003, respectively, showing relatively excellent performance in the bone window setting CT image. The possibility of future studies aimed image quality and exposure dose is confirmed, and additional studies that need to be verified are also presented, which can be used as basic data for the above studies.