• Title/Summary/Keyword: Brain, CT

Search Result 589, Processing Time 0.021 seconds

Unusual Acute Encephalitis Involving the Thalamus: Imaging Features

  • Sam Soo Kim;Kee-Hyun Chang;Kyung Won Kim;Moon Hee Han;Sung Ho Park;Hyun Woo Nam;Kyu Ho Choi;Woo Ho Cho
    • Korean Journal of Radiology
    • /
    • v.2 no.2
    • /
    • pp.68-74
    • /
    • 2001
  • Objective: To describe the brain CT and MR imaging findings of unusual acute encephalitis involving the thalamus. Materials and Methods: We retrospectively reviewed the medical records and CT and/or MR imaging findings of six patients with acute encephalitis involving the thalamus. CT (n=6) and MR imaging (n=6) were performed during the acute and/or convalescent stage of the illness. Results: Brain CT showed brain swelling (n=2), low attenuation of both thalami (n=1) or normal findings (n=3). Initial MR imaging indicated that in all patients the thalamus was involved either bilaterally (n=5) or unilaterally (n=1). Lesions were also present in the midbrain (n=5), medial temporal lobe (n=4), pons (n=3), both hippocampi (n=3) the insular cortex (n=2), medulla (n=2), lateral temporal lobe cortex (n=1), both cingulate gyri (n=1), both basal ganglia (n=1), and the left hemispheric cortex (n=1). Conclusion: These CT or MR imaging findings of acute encephalitis of unknown etiology were similar to a combination of those of Japanese encephalitis and herpes simplex encephalitis. In order to document the specific causative agents which lead to the appearance of these imaging features, further investigation is required.

  • PDF

Utility of Brain Computed Tomography in Detecting Fractures of the Temporal Bones Correlated with Patterns of Fracture on High-Resolution Computed Tomography (고해상도 전산화 단층촬영에서 확인된 골절 유형에 따른 측두골 골절의 진단에서 뇌전산화 단층촬영의 유용성)

  • Kwon, Bong-Seok;Shin, Dong-Hyuk;Choi, Pil-Cho;Han, Sang-Kuk;Lee, Jeong-Hun;Song, Hyoung-Gon
    • Journal of Trauma and Injury
    • /
    • v.23 no.1
    • /
    • pp.38-42
    • /
    • 2010
  • Purpose: The clinical utility of brain computed tomography (CT) in detecting temporal bone fracture is not well established. We performed this study to determine the utility of brain computed tomography (CT) in detecting fractures of the temporal bones in correlation with fracture patterns. We used high resolution computed tomography (HRCT) as the gold standard for diagnosing temporal bone fracture and its pattern. Methods: From January 2007 to December 2009, patients who underwent both brain CT and HRCT within 10 days of head trauma were investigated. Among them, 58 cases of temporal bone fracture confirmed by HRCT were finally included. Fracture patterns (transverse or non-transverse, otic capsule sparing or otic capsule violating) were determined by HRCT. Brain CT findings in correlation with fracture patterns were analyzed. Results: Among 58 confirmed cases of temporal bone fracture by HRCT, 14 cases (24.1%) were not detected by brain CT. Brain CT showed a significantly lower ability to detect temporal bone fracture with transverse component than without transverse component (p=0.020). Moreover, brain CT showed lower ability to detect otic capsule violating pattern than otic capsule sparing pattern (p=0.015). Among the 14 cases of temporal bone fracture that were not detected by brain CT, 4 cases lacked any objective physical findings (facial palsy, hemotympanum, external auditory canal bleeding) suggesting fractures of the temporal bones. Conclusion: Brain CT showed poor ability to detect temporal bone fracture with transverse component and otic capsule violating pattern, which is associated with a poorer clinical outcome than otic capsule sparing pattern. Routine use of HRCT to identify temporal bone fracture is warranted, even in cases without evidence of temporal bone fracture on brain CT scans or any objective physical findings suggestive of temporal bone fracture.

Sequential Change of Hypometabolic Metastasis from Non-small-cell Lung Cancer on Brain FDG-PET/CT (연속적인 FDG-PET/CT 검사에서 섭취 감소로 관찰된 비소세포암의 뇌전이)

  • Park, Soon-Ah;Yang, Sei-Hoon;Yang, Chung-Yong;Choi, Keum-Ha
    • Nuclear Medicine and Molecular Imaging
    • /
    • v.43 no.5
    • /
    • pp.505-507
    • /
    • 2009
  • A 60-year-old woman, who had non-small-cell lung cancer (NSCLC) in left lower lobe underwent brain F-18 fluorodeoxyglucose positron emission tomography/computed tomography (FDG-PET/CT) for evaluation of cerebral metastasis. On follow-up FDG-PET/CT, only hypometaolic lesion was detected and progressed in right frontal lobe at 6 months and 10 months, later. Hypermetabolic metastasis was not detected even at last scan time of FDG-PET/CT. Brain MRI showed brain metastasis in right frontal lobe. As might be expected, the physician should take cerebral metastasis into consideration even though there is only hypometabolic change on subsequent FDG-PET/CT in patients with NSCLC.

3D Brain-Endoscopy Using VRML and 2D CT images (VRML을 이용한 3차원 Brain-endoscopy와 2차원 단면 영상)

  • Kim, D.O.;Ahn, J.Y.;Lee, D.H.;Kim, N.K.;Kim, J.H.;Min, B.G.
    • Proceedings of the KOSOMBE Conference
    • /
    • v.1998 no.11
    • /
    • pp.285-286
    • /
    • 1998
  • Virtual Brain-endoscopy is an effective method to detect lesion in brain. Brain is the most part of the human and is not easy part to operate so that reconstructing in 3D may be very helpful to doctors. In this paper, it is suggested that to increase the reliability, method of matching 3D object with the 2D CT slice. 3D Brain-endoscopy is reconstructed with 35 slices of 2D CT images. There is a plate in 3D brain-endoscopy so as to drag upward or downward to match the relevant 2D CT image. Relevant CT image guides the user to recognize the exact part he or she is investigating. VRML Script is used to make the change in images and PlaneSensor node is used to transmit the y coordinate value with the CT image. The result is test on the PC which has the following spec. 400MHz Clock-speed, 512MB ram, and FireGL 3000 3D accelerator is set up. The VRML file size is 3.83MB. There was no delay in controlling the 3D world and no collision in changing the CT images. This brain-endoscopy can be also put to practical use on medical education through internet.

  • PDF

Hydrocephalus: Ventricular Volume Quantification Using Three-Dimensional Brain CT Data and Semiautomatic Three-Dimensional Threshold-Based Segmentation Approach

  • Hyun Woo Goo
    • Korean Journal of Radiology
    • /
    • v.22 no.3
    • /
    • pp.435-441
    • /
    • 2021
  • Objective: To evaluate the usefulness of the ventricular volume percentage quantified using three-dimensional (3D) brain computed tomography (CT) data for interpreting serial changes in hydrocephalus. Materials and Methods: Intracranial and ventricular volumes were quantified using the semiautomatic 3D threshold-based segmentation approach for 113 brain CT examinations (age at brain CT examination ≤ 18 years) in 38 patients with hydrocephalus. Changes in ventricular volume percentage were calculated using 75 serial brain CT pairs (time interval 173.6 ± 234.9 days) and compared with the conventional assessment of changes in hydrocephalus (increased, unchanged, or decreased). A cut-off value for the diagnosis of no change in hydrocephalus was calculated using receiver operating characteristic curve analysis. The reproducibility of the volumetric measurements was assessed using the intraclass correlation coefficient on a subset of 20 brain CT examinations. Results: Mean intracranial volume, ventricular volume, and ventricular volume percentage were 1284.6 ± 297.1 cm3, 249.0 ± 150.8 cm3, and 19.9 ± 12.8%, respectively. The volumetric measurements were highly reproducible (intraclass correlation coefficient = 1.0). Serial changes (0.8 ± 0.6%) in ventricular volume percentage in the unchanged group (n = 28) were significantly smaller than those in the increased and decreased groups (6.8 ± 4.3% and 5.6 ± 4.2%, respectively; p = 0.001 and p < 0.001, respectively; n = 11 and n = 36, respectively). The ventricular volume percentage was an excellent parameter for evaluating the degree of hydrocephalus (area under the receiver operating characteristic curve = 0.975; 95% confidence interval, 0.948-1.000; p < 0.001). With a cut-off value of 2.4%, the diagnosis of unchanged hydrocephalus could be made with 83.0% sensitivity and 100.0% specificity. Conclusion: The ventricular volume percentage quantified using 3D brain CT data is useful for interpreting serial changes in hydrocephalus.

Virtual Monochromatic Image Quality from Dual-Layer Dual-Energy Computed Tomography for Detecting Brain Tumors

  • Shota Tanoue;Takeshi Nakaura;Yasunori Nagayama;Hiroyuki Uetani;Osamu Ikeda;Yasuyuki Yamashita
    • Korean Journal of Radiology
    • /
    • v.22 no.6
    • /
    • pp.951-958
    • /
    • 2021
  • Objective: To evaluate the usefulness of virtual monochromatic images (VMIs) obtained using dual-layer dual-energy CT (DL-DECT) for evaluating brain tumors. Materials and Methods: This retrospective study included 32 patients with brain tumors who had undergone non-contrast head CT using DL-DECT. Among them, 15 had glioblastoma (GBM), 7 had malignant lymphoma, 5 had high-grade glioma other than GBM, 3 had low-grade glioma, and 2 had metastatic tumors. Conventional polychromatic images and VMIs (40-200 keV at 10 keV intervals) were generated. We compared CT attenuation, image noise, contrast, and contrast-to-noise ratio (CNR) between tumor and white matter (WM) or grey matter (GM) between VMIs showing the highest CNR (optimized VMI) and conventional CT images using the paired t test. Two radiologists subjectively assessed the contrast, margin, noise, artifact, and diagnostic confidence of optimized VMIs and conventional images on a 4-point scale. Results: The image noise of VMIs at all energy levels tested was significantly lower than that of conventional CT images (p < 0.05). The 40-keV VMIs yielded the best CNR. Furthermore, both contrast and CNR between the tumor and WM were significantly higher in the 40 keV images than in the conventional CT images (p < 0.001); however, the contrast and CNR between tumor and GM were not significantly different (p = 0.47 and p = 0.31, respectively). The subjective scores assigned to contrast, margin, and diagnostic confidence were significantly higher for 40 keV images than for conventional CT images (p < 0.01). Conclusion: In head CT for patients with brain tumors, compared with conventional CT images, 40 keV VMIs from DL-DECT yielded superior tumor contrast and diagnostic confidence, especially for brain tumors located in the WM.

Optimization of Brain Computed Tomography Protocols to Radiation Dose Reduction (뇌전산화단층검사에서 방사선량 저감을 위한 최적화 프로토콜 연구)

  • Lee, Jae-Seung;Kweon, Dae Cheol
    • Journal of Biomedical Engineering Research
    • /
    • v.39 no.3
    • /
    • pp.116-123
    • /
    • 2018
  • This study is a model experimental study using a phantom to propose an optimized brain CT scan protocol that can reduce the radiation dose of a patient and remain quality of image. We investigate the CT scan parameters of brain CT in clinical medical institutions and to measure the important parameters that determine the quality of CT images. We used 52 multislice spiral CT (SOMATOM Definition AS+, Siemens Healthcare, Germany). The scan parameters were tube voltage (kVp), tube current (mAs), scan time, slice thickness, pitch, and scan field of view (SFOV) directly related to the patient's exposure dose. The CT dose indicators were CTDIvol and DLP. The CT images were obtained while increasing the imaging conditions constantly from the phantom limit value (Q1) to the maximum value (Q4) for AAPM CT performance evaluation. And statistics analyzed with Pearson's correlation coefficients. The result of tube voltage that the increase in tube voltage proportionally increases the variation range of the CT number. And similar results were obtained in the qualitative evaluation of the CT image compared to the tube voltage of 120 kVp, which was applied clinically at 100 kVp. Also, the scan conditions were appropriate in the tube current range of 250 mAs to 350 mAs when the tube voltage was 100 kVp. Therefore, by applying the proposed brain CT scanning parameters can be reduced the radiation dose of the patient while maintaining quality of image.

Comparative Evaluation of Single-Energy CT and Dual-Energy CT in Brain Angiography : Using a Rando Phantom and OSLD (뇌혈관조영검사 시 단일에너지 CT와 이중에너지 CT의 비교평가 : 화질 및 유효선량평가)

  • Byeong-Geun Shin;Seong-Min Ahn
    • Journal of the Korean Society of Radiology
    • /
    • v.17 no.6
    • /
    • pp.809-817
    • /
    • 2023
  • Single source and dual source measurements using anthropomorphic phantoms in which the phantoms are lined up in human body equivalents use OSLD (Optically Stimulated Luminescence Dosimeter), so the effective dose is calculated using OSLD. For hospital images, SNR (Signal to Noise Ratio) and CNR (Contrast to Noise Ratio) were measured in MCA (Middle Cerebral Artery) for single source and dual source, and for phantom images, SNR and CNR were measured for brain parenchyma of single source and dual source. For hospital imaging, SNR and CNR were measured in MCA for both single-source and dual-source, and for phantom images, SNR and CNR were measured for brain parenchyma from single-source and dual-source. As a result of comparing the SNR and CNR of the hospital image and the phantom image, there was no statistical difference. Comparing patient doses in hospital images, the effective dose of the dual source was 53.53% less and the effective dose of the dual energy phantom was 57.94% less. The dose can be increased in other areas, but the cerebrovascular area is useful because the dose is small.

Accuracy Evaluation of Three-Dimensional Multimodal Image Registration Using a Brain Phantom (뇌팬톰을 이용한 삼차원 다중영상정합의 정확성 평가)

  • 진호상;송주영;주라형;정수교;최보영;이형구;서태석
    • Journal of Biomedical Engineering Research
    • /
    • v.25 no.1
    • /
    • pp.33-41
    • /
    • 2004
  • Accuracy of registration between images acquired from various medical image modalities is one of the critical issues in radiation treatment planing. In this study, a method of accuracy evaluation of image registration using a homemade brain phantom was investigated. Chamfer matching of CT-MR and CT-SPECT imaging was applied for the multimodal image registration. The accuracy of image correlation was evaluated by comparing the center points of the inserted targets of the phantom. The three dimensional root-mean-square translation deviations of the CT-MR and CT-SPECT registration were 2.1${\pm}$0.8 mm and 2.8${\pm}$1.4 mm, respectively. The rotational errors were < 2$^{\circ}$ for the three orthogonal axes. These errors were within a reasonable margin compared with the previous phantom studies. A visual inspection of the superimposed CT-MR and CT- SPECT images also showed good matching results.

Clinical Feasibility of CT Brain Perfusion in a Dog with Sellar Region Tumor

  • Minji Kim;Gunha Hwang;Jeongmin Ryu;Jiwon Yoon;Moon Yeong Choi;Joong-Hyun Song;Tae Sung Hwang;Hee Chun Lee
    • Journal of Veterinary Clinics
    • /
    • v.41 no.3
    • /
    • pp.178-182
    • /
    • 2024
  • A 10-year-old spayed female Poodle was referred for blindness. On ophthalmic examination, loss of bilateral ocular pupil light reflex, visual loss, and right retinal detachment were confirmed at a local hospital. Magnetic resonance imaging (MRI) of the brain was performed to identify the optic nerve, optic chiasm, and brain disease. A sessile mass centered on the region of the optic chiasm was identified. The mass had iso- to hypointense on fluid-attenuated inversion recovery and T2-weighted images and mildly hypointense on T1-weighted images compared to the gray matter, with strong contrast enhancement. Peripheral edema was also identified. Computed tomography (CT) brain perfusion was performed to obtain additional hemodynamic information about the patient using a multislice CT. CT perfusion showed that the cerebral blood volume in the left temporal lobe region (13.4 ± 1.6 mL/100 g) was decreased relative to the contralateral region (19.9 ± 0.3 mL/100 g). The patient showed decreased appetite and consciousness one week after the CT scan with clinical symptoms worsened. The patient had seizure, tetraparesis, and loss of consciousness. It was euthanized one month later at the request of the owner. This report suggests that CT brain perfusion can provide additional hemodynamic information such as insufficient brain perfusion in sellar region tumor which can help assess potential complications and prognosis and plan treatment.