• 제목/요약/키워드: Brain, CT

검색결과 581건 처리시간 0.024초

연속적인 FDG-PET/CT 검사에서 섭취 감소로 관찰된 비소세포암의 뇌전이 (Sequential Change of Hypometabolic Metastasis from Non-small-cell Lung Cancer on Brain FDG-PET/CT)

  • 박순아;양세훈;양충용;최금하
    • Nuclear Medicine and Molecular Imaging
    • /
    • 제43권5호
    • /
    • pp.505-507
    • /
    • 2009
  • A 60-year-old woman, who had non-small-cell lung cancer (NSCLC) in left lower lobe underwent brain F-18 fluorodeoxyglucose positron emission tomography/computed tomography (FDG-PET/CT) for evaluation of cerebral metastasis. On follow-up FDG-PET/CT, only hypometaolic lesion was detected and progressed in right frontal lobe at 6 months and 10 months, later. Hypermetabolic metastasis was not detected even at last scan time of FDG-PET/CT. Brain MRI showed brain metastasis in right frontal lobe. As might be expected, the physician should take cerebral metastasis into consideration even though there is only hypometabolic change on subsequent FDG-PET/CT in patients with NSCLC.

VRML을 이용한 3차원 Brain-endoscopy와 2차원 단면 영상 (3D Brain-Endoscopy Using VRML and 2D CT images)

  • 김동욱;안진영;이동혁;김남국;김종효;민병구
    • 대한의용생체공학회:학술대회논문집
    • /
    • 대한의용생체공학회 1998년도 추계학술대회
    • /
    • pp.285-286
    • /
    • 1998
  • Virtual Brain-endoscopy is an effective method to detect lesion in brain. Brain is the most part of the human and is not easy part to operate so that reconstructing in 3D may be very helpful to doctors. In this paper, it is suggested that to increase the reliability, method of matching 3D object with the 2D CT slice. 3D Brain-endoscopy is reconstructed with 35 slices of 2D CT images. There is a plate in 3D brain-endoscopy so as to drag upward or downward to match the relevant 2D CT image. Relevant CT image guides the user to recognize the exact part he or she is investigating. VRML Script is used to make the change in images and PlaneSensor node is used to transmit the y coordinate value with the CT image. The result is test on the PC which has the following spec. 400MHz Clock-speed, 512MB ram, and FireGL 3000 3D accelerator is set up. The VRML file size is 3.83MB. There was no delay in controlling the 3D world and no collision in changing the CT images. This brain-endoscopy can be also put to practical use on medical education through internet.

  • PDF

Hydrocephalus: Ventricular Volume Quantification Using Three-Dimensional Brain CT Data and Semiautomatic Three-Dimensional Threshold-Based Segmentation Approach

  • Hyun Woo Goo
    • Korean Journal of Radiology
    • /
    • 제22권3호
    • /
    • pp.435-441
    • /
    • 2021
  • Objective: To evaluate the usefulness of the ventricular volume percentage quantified using three-dimensional (3D) brain computed tomography (CT) data for interpreting serial changes in hydrocephalus. Materials and Methods: Intracranial and ventricular volumes were quantified using the semiautomatic 3D threshold-based segmentation approach for 113 brain CT examinations (age at brain CT examination ≤ 18 years) in 38 patients with hydrocephalus. Changes in ventricular volume percentage were calculated using 75 serial brain CT pairs (time interval 173.6 ± 234.9 days) and compared with the conventional assessment of changes in hydrocephalus (increased, unchanged, or decreased). A cut-off value for the diagnosis of no change in hydrocephalus was calculated using receiver operating characteristic curve analysis. The reproducibility of the volumetric measurements was assessed using the intraclass correlation coefficient on a subset of 20 brain CT examinations. Results: Mean intracranial volume, ventricular volume, and ventricular volume percentage were 1284.6 ± 297.1 cm3, 249.0 ± 150.8 cm3, and 19.9 ± 12.8%, respectively. The volumetric measurements were highly reproducible (intraclass correlation coefficient = 1.0). Serial changes (0.8 ± 0.6%) in ventricular volume percentage in the unchanged group (n = 28) were significantly smaller than those in the increased and decreased groups (6.8 ± 4.3% and 5.6 ± 4.2%, respectively; p = 0.001 and p < 0.001, respectively; n = 11 and n = 36, respectively). The ventricular volume percentage was an excellent parameter for evaluating the degree of hydrocephalus (area under the receiver operating characteristic curve = 0.975; 95% confidence interval, 0.948-1.000; p < 0.001). With a cut-off value of 2.4%, the diagnosis of unchanged hydrocephalus could be made with 83.0% sensitivity and 100.0% specificity. Conclusion: The ventricular volume percentage quantified using 3D brain CT data is useful for interpreting serial changes in hydrocephalus.

Virtual Monochromatic Image Quality from Dual-Layer Dual-Energy Computed Tomography for Detecting Brain Tumors

  • Shota Tanoue;Takeshi Nakaura;Yasunori Nagayama;Hiroyuki Uetani;Osamu Ikeda;Yasuyuki Yamashita
    • Korean Journal of Radiology
    • /
    • 제22권6호
    • /
    • pp.951-958
    • /
    • 2021
  • Objective: To evaluate the usefulness of virtual monochromatic images (VMIs) obtained using dual-layer dual-energy CT (DL-DECT) for evaluating brain tumors. Materials and Methods: This retrospective study included 32 patients with brain tumors who had undergone non-contrast head CT using DL-DECT. Among them, 15 had glioblastoma (GBM), 7 had malignant lymphoma, 5 had high-grade glioma other than GBM, 3 had low-grade glioma, and 2 had metastatic tumors. Conventional polychromatic images and VMIs (40-200 keV at 10 keV intervals) were generated. We compared CT attenuation, image noise, contrast, and contrast-to-noise ratio (CNR) between tumor and white matter (WM) or grey matter (GM) between VMIs showing the highest CNR (optimized VMI) and conventional CT images using the paired t test. Two radiologists subjectively assessed the contrast, margin, noise, artifact, and diagnostic confidence of optimized VMIs and conventional images on a 4-point scale. Results: The image noise of VMIs at all energy levels tested was significantly lower than that of conventional CT images (p < 0.05). The 40-keV VMIs yielded the best CNR. Furthermore, both contrast and CNR between the tumor and WM were significantly higher in the 40 keV images than in the conventional CT images (p < 0.001); however, the contrast and CNR between tumor and GM were not significantly different (p = 0.47 and p = 0.31, respectively). The subjective scores assigned to contrast, margin, and diagnostic confidence were significantly higher for 40 keV images than for conventional CT images (p < 0.01). Conclusion: In head CT for patients with brain tumors, compared with conventional CT images, 40 keV VMIs from DL-DECT yielded superior tumor contrast and diagnostic confidence, especially for brain tumors located in the WM.

뇌전산화단층검사에서 방사선량 저감을 위한 최적화 프로토콜 연구 (Optimization of Brain Computed Tomography Protocols to Radiation Dose Reduction)

  • 이재승;권대철
    • 대한의용생체공학회:의공학회지
    • /
    • 제39권3호
    • /
    • pp.116-123
    • /
    • 2018
  • This study is a model experimental study using a phantom to propose an optimized brain CT scan protocol that can reduce the radiation dose of a patient and remain quality of image. We investigate the CT scan parameters of brain CT in clinical medical institutions and to measure the important parameters that determine the quality of CT images. We used 52 multislice spiral CT (SOMATOM Definition AS+, Siemens Healthcare, Germany). The scan parameters were tube voltage (kVp), tube current (mAs), scan time, slice thickness, pitch, and scan field of view (SFOV) directly related to the patient's exposure dose. The CT dose indicators were CTDIvol and DLP. The CT images were obtained while increasing the imaging conditions constantly from the phantom limit value (Q1) to the maximum value (Q4) for AAPM CT performance evaluation. And statistics analyzed with Pearson's correlation coefficients. The result of tube voltage that the increase in tube voltage proportionally increases the variation range of the CT number. And similar results were obtained in the qualitative evaluation of the CT image compared to the tube voltage of 120 kVp, which was applied clinically at 100 kVp. Also, the scan conditions were appropriate in the tube current range of 250 mAs to 350 mAs when the tube voltage was 100 kVp. Therefore, by applying the proposed brain CT scanning parameters can be reduced the radiation dose of the patient while maintaining quality of image.

뇌혈관조영검사 시 단일에너지 CT와 이중에너지 CT의 비교평가 : 화질 및 유효선량평가 (Comparative Evaluation of Single-Energy CT and Dual-Energy CT in Brain Angiography : Using a Rando Phantom and OSLD)

  • 신병근;안성민
    • 한국방사선학회논문지
    • /
    • 제17권6호
    • /
    • pp.809-817
    • /
    • 2023
  • 뇌출혈 진단 방법 중 CT는 비침습적으로 피사체의 3차원 영상을 제공할 수 있다. 그래서 응급실에서 급성인 환자 상대로 많이 사용되고 중요한 역할을 담당하고 있다. 뇌혈관 CT는 다른 혈관 CT에 비해 비교적 촬영 빈도가 높으며 뇌혈관 CT 검사 시 적절한 SNR, 합리적인 유효선량으로 검사를 해야한다. 뇌혈관 CT 검사 시 이중에너지와 단일에너지를 이용하였을 때 실질적으로 어느 것이 유효선량이 적으며, SNR이 차이가 없는지 환자영상과 Phantom영상을 같이 비교하였다. SNR과 CNR의 P값이 0.05이상일 때 통계적으로 차이가 없다고 보았고, 유효선량은 0.05미만일 경우 통계적으로 차이가 있다고 보았다. 실험에서는 병원영상의 환자선량을 비교하였을 때 이중에너지의 유효선량이 53.53% 적게, Phantom의 OLSD 이중에너지 유효선량이 57.94% 적게, Phantom의 Dose Report의 이중에너지 유효선량이 56.04% 적었다. 그래서 뇌혈관조영 CT는 이중에너지를 권장한다.

뇌팬톰을 이용한 삼차원 다중영상정합의 정확성 평가 (Accuracy Evaluation of Three-Dimensional Multimodal Image Registration Using a Brain Phantom)

  • 진호상;송주영;주라형;정수교;최보영;이형구;서태석
    • 대한의용생체공학회:의공학회지
    • /
    • 제25권1호
    • /
    • pp.33-41
    • /
    • 2004
  • 다양한 의학 영상장비로부터 획득된 영상들간의 정합의 정확성은 방사선치료계획에서 매우 중요한 쟁점 중의 하나이다. 본 연구에서는 수제작된 뇌팬톰(brain phantom)을 이용한 영상정합의 정확성 평가방법을 연구하였다. 다중영상정합을 위해 CT-MR, CT-SPECT간의 Chamfer 정합(Chamfer matching)법을 적용하였다 영상정합의 정회성은 팬톰 내에 삽입된 표적(target)들의 중심정의 비교를 통하여 평가되었다. CT-MR, CT-SPECT간의 삼차원 제곱근평균제곱(root-mean-square) 이동편차는 각각 2.1$\pm$0.8 mm와 2.8$\pm$1.4 mm이었다. 회전편차는 세 직교좌표축에서 2$^{\circ}$이내였다. 이 오차들은 기존의 팬톰연구와 비교하여 합리적인 오차 허용범위 내에 들었다. 중첩한 CT-MR, CT-SPECT영상의 육안검증 또한 좋은 정합 결과를 보였다.

전산화(電算化) 단층촬영기(斷層撮影機)의 보유현황(保有現況) 및 이용실태(利用實態) (부산시내(釜山市內) 병원(病院)을 중심(中心)으로) (A Study on the Status and Utilization of Computed Tomography Units in Pusan Area)

  • 오문영
    • 대한방사선기술학회지:방사선기술과학
    • /
    • 제14권1호
    • /
    • pp.29-44
    • /
    • 1991
  • A Study on the distribution and types of the total 40 CT units, as of 1st October 1990, in Pusan area(29 for whole body CT units, 11 for brain CT units) were carried out during the period from January 1989 to December 1989 to find out the status of operation and utilization of whole body CT units. The results were as following ; 1. As of 1st October 1990 in Pusan area, a total of 40 CT units(29 for whole body CT units, 11 for brain CT units) were set up and operated. The number of cases of CT examination performed per day per unit were appeared to be less than 5 cases among 59.5% of CT units, and 2.7% of the total units has peformed more than 16 examinations. 2. The CT units under operation occupied 93.5% of the total and 2.6% of the total units was not properly been operated due to mechanical breakdown. This results is appeared to be better than other reports. 3. The average number of scanning per week for each CT were 35 cases and the average days under operation of the unit per week were 6.7 days. Consequently, the average days under operation of units was higher than that of the other reports, but the average number of scanning was lower. 4. The cases referred from other institutes to hospitals were 6.4% of total cases. 5. As a site of scanning, the brain appeared most frequently with 71.2% of the total cases and followed by spine 12.4%, abdomen 8.5%, and thorax 3.6%, respectively. 6. Positive rate by scanning was 70.8% of total cases, and it was 98.9% with thorax, abdomen 96.3%, spine 93.1%, and brain 38.4%, respectively. According to the results of this study, it is highly recommended that the regulations and the guidelines for setting-up of such high cost medical equipments as CT units be provided in order to ensure the cost-effectiveness of the system.

  • PDF

The Crucial Role of the Establishment of Computed Tomography Density Conversion Tables for Treating Brain or Head/Neck Tumors

  • Yang, Shu-Chin;Lo, Su-Hua;Shie, Li-Tsuen;Lee, Sung-Wei;Ho, Sheng-Yow
    • 한국의학물리학회지:의학물리
    • /
    • 제32권3호
    • /
    • pp.59-69
    • /
    • 2021
  • Purpose: The relationship between computed tomography (CT) number and electron density (ED) has been investigated in previous studies. However, the role of these measures for guiding cancer treatment remains unclear. Methods: The CT number was plotted against ED for different imaging protocols. The CT number was imported into ED tables for the Pinnacle treatment planning system (TPS) and was used to determine the effect on dose calculations. Conversion tables for radiation dose calculations were generated and subsequently monitored using a dosimeter to determine the effect of different CT scanning protocols and treatment sites. These tables were used to retrospectively recalculate the radiation therapy plans for 41 patients after an incorrect scanning protocol was inadvertently used. The gamma index was further used to assess the dose distribution, percentage dose difference (DD), and distance-to-agreement (DTA). Results: For densities <1.1 g/cm3, the standard deviation of the CT number was ±0.6% and the greatest variation was noted for brain protocol conditions. For densities >1.1 g/cm3, the standard deviation of the CT number was ±21.2% and the greatest variation occurred for the tube voltage and head and neck (H&N) protocol conditions. These findings suggest that the factors most affecting the CT number are the tube voltage and treatment site (brain and H&N). Gamma index analyses for the 41 retrospective clinical cases, as well as brain metastases and H&N tumors, showed gamma passing rates >90% and <90% for the passing criterion of 2%/2 and 1%/1 mm, respectively. Conclusions: The CT protocol should be carefully decided for TPS. The correct protocol should be used for the corresponding TPS based on the treatment site because this especially affects the dose distribution for brain metastases and H&N tumor recognition. Such steps could help reduce systematic errors.

만성 경막하 혈종의 성장에 대한 뇌 CT 소견 및 치료 방침 (Evolution of Chronic Subdural Hematoma based on Brain CT findings and Appropriate Treatment Methods)

  • 이영배
    • Journal of Trauma and Injury
    • /
    • 제25권4호
    • /
    • pp.209-216
    • /
    • 2012
  • Purpose: The objectives of this study are to classify chronic subdural hematomas based on brain computerized tomographic scan (CT scan) findings and to determine the mechanism of evolution and treatment methods. Methods: One hundred thirty-nine patients who were diagnosed with a chronic subdural hematoma and who available for follow up assessment 6 months post-surgery were analyzed retrospectively. The presence of trauma and past medical history were reviewed and evaluation criteria based on brain CT scan findings were examined. Results: Initial brain CT scans revealed a chronic subdural hematoma in 106 patients, a subdural hygroma in 24 patients, and an acute subdural hematoma in 9 patients. In all cases where the initial acute subdural hematoma had progressed to a chronic subdural hematoma, final was a hypo-density chronic subdural hematoma. In case where the initial subdural hygroma had progressed to a chronic subdural hematoma, the most cases of hematoma were hyper-density and mixed-density chronic subdural hematoma. In total, 173 surgeries were performed, and they consisted of 97 one burr-hole drainages, 70 two burr-hole drainages and 6 craniotomies. Conclusion: This study demonstrates that rebleeding and osmotic effects are mechanisms for enlarging of a chronic subdural hematoma. In most cases, one burr-hole drainage is a sufficient for treatment. However, in cases of mixed or acute-on-chronic subdural hematomas, other appropriate treatment strategies are required.