• Title/Summary/Keyword: Braid Angle

Search Result 4, Processing Time 0.019 seconds

Stress Variation Characteristics of a High-Pressure Hose with Respect to Wire Braid Angle (강선의 편조각도에 따른 고압호스의 응력변화 특성)

  • Kim, H.J.;Koh, S.W.;Kim, B.T.
    • Journal of Power System Engineering
    • /
    • v.9 no.3
    • /
    • pp.71-78
    • /
    • 2005
  • A high-pressure hose includes rebar layers of the synthetic fiber such as nylon or a steel wire to control internal pressure. The hose assembly is manufactured through the swaging process to clamp the hose into the metal fittings. Usually, the hose behavior is affected by the resultant of the longitudinal and circumferential forces produced by the internal pressure. The rebar layers can appear the most ideal rebar effect when they are arranged to the same direction as the resultant force. The braid angle applied in the rebar layers is an important factor in determining ultimate burst pressure and overall hose life. Failure can occur on the contacted parts of a hose with the metal fittings under severe operating conditions such as high pressure and temperature of the inner fluid. In this paper, the mechanical behavior between the hose and the metal fittings during the swaging process and the stress variation characteristics of a high-pressure hose under a constant applied pressure are analyzed with respect to the braid angle of steel wire using the finite element method.

  • PDF

Derivation of Effective Material Properties of Reinforced Braid Layer Using Detailed 3-D Finite Element Model (상세 유한요소 모델을 이용한 섬유 보강사의 등가물성 유도)

  • Song, Jeong-In;Cho, Jin-Rae
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.28 no.11
    • /
    • pp.1752-1759
    • /
    • 2004
  • Reinforced braid layer (RBL) in automobile power steering hose plays an important role in power steering system. When the working oil is applied to the power steering hose, RBL suppresses rubber hose deformation from internal pressure and heat expansion. RBL is woven textile composites having a double-row structure of nylon cords twisted with the specific helix angle. In this paper, effective material properties of RBL are estimated using a detailed 3-D finite element model considering its complicated geometry. Numerical experiments based on a superposition method are carried out to simulate uniaxial tensile loading condition.

A Study on the Mechanical Properties of Braid Composites for the Manufacture of Aircraft Stringer (항공기용 스트링거 제작을 위한 브레이드 복합재료의 물성에 관한 연구)

  • Eun, Jong Hyun;Lee, Joon Suck;Park, Seung Hwan;Kim, Dong Hyun;Chon, Jin Sung;Yoo, Ho Wook
    • Composites Research
    • /
    • v.31 no.6
    • /
    • pp.293-298
    • /
    • 2018
  • In this paper, we have studied the physical properties of braided composites for use as aircraft stringers. Process variables such as drum winder speed, braid velocity, and mandrel diameter for $30^{\circ}$, $45^{\circ}$ and $60^{\circ}$ braid preforms were quantified and different epoxy resin types were applied to the braided preform using TGDDM, YD-128. Physical properties such as tensile strength and flexural strength of braided composites were investigated. Thermal properties and decomposition temperature of epoxy resin were investigated by TGA analysis. As a result, the lower the angle of the braid composites, the higher the tensile strength and the Flexural strength. The physical properties of braided composites fabricated using TGDDM epoxy resin were superior to the physical properties of braided composites fabricated using YD-128 epoxy resin. This is because the molecular weight of TGDDM epoxy resin was higher than that of YD-128 epoxy resin.

Development of CFRP Tubes for the Light-Weight Propeller Shaft of 4WD SUV Vehicles (4륜구동 SUV 차량용 구동축 경량화를 위한 CFRP 튜브 개발)

  • Na, Hae-Jung;Chun, Jin-Sung;Cho, Kyu-Sang
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.17 no.4
    • /
    • pp.32-38
    • /
    • 2018
  • In this study, the one-piece propeller shaft composed of carbon/epoxy was designed and manufactured for 4 wheel drive automobiles that can bear the target torsional torque performance of 3.5kN.m. For the CFRP tube, braiding machine was used to weaving carbon fiber and it was formed the braided yarns with the braid angle ${\pm}45^{\circ}$ and axial yarns to improve strength of the lengthwise direction. The final CFRP tube of propeller shaft was evaluated through the torsional torque test. The CFRP propeller shaft satisfied requirement of the target torsional maximum torque of 3.5kN.m. Also, it was found that the one-piece composite propeller shaft with CFRP tube had 30% weight saving effect compared with a two-piece steel propeller shaft.