• Title/Summary/Keyword: Bragg gratings

Search Result 142, Processing Time 0.032 seconds

Fabrication of Various Fiber Bragg Gratings Using the UV-Argon Laser (제2고조파 Argon Laser를 이용한 여러 가지 광섬유 격자의 제작)

  • 김승우;권재중;김성철;이병호
    • Proceedings of the IEEK Conference
    • /
    • 1999.11a
    • /
    • pp.309-312
    • /
    • 1999
  • Fiber Bragg gratings have many applications such as fiber sensors, band-stop filters, add-drop filters, and mode convertors. In this paper, we present the fabrication method of various fiber Bragg gratings by using continuous wave UV-Argon(frequency-doubled Argon) laser. In our experiments, hydrogenation of fibers was used to enhance photosensitivity of fiber. And we fabricated fiber gratings by the phase mask method.

  • PDF

Polymeric Waveguides with Bragg Gratings in the Middle of the Core Layer

  • Jeong, In-Soek;Park, Hae-Ryeong;Lee, Sang-Won;Lee, Myung-Hyun
    • Journal of the Optical Society of Korea
    • /
    • v.13 no.2
    • /
    • pp.294-298
    • /
    • 2009
  • In this paper we proposed a new Bragg grating waveguide in order to improve reflectivity and to achieve compactness. Bragg gratings with various thicknesses were engraved in the middle of the core layer with a length of 3 mm. For the sake of cost-effectiveness, the $3^{rd}$ order Bragg grating waveguides were fabricated via conventional photolithography. The maximum reflectivities for the fixed width waveguide of $6{\mu}m$ with the 0.1 and $0.3{\mu}m$-thick Bragg gratings were, -13.14 and -6.25 dB, respectively, and the Bragg wavelengths were 1562.28, 1564.10 nm, respectively. A slight increase in the Bragg grating thickness can result in a remarkable reduction in the length of the Bragg grating waveguide with a fixed reflectivity.

Temperature Characteristics and Annealing Process of the Waveguide Bragg Grating (광도파로 브래그 격자의 온도특성과 열처리 공정)

  • 한준모;서영진;백세종;노흥렬;임기건;최두선
    • Transactions of Materials Processing
    • /
    • v.13 no.3
    • /
    • pp.205-210
    • /
    • 2004
  • The waveguide Bragg gratings have been fabricated by the phase-mask method. An excimer laser with maximum 600mJ output pulse energy and uniform phase masks have been used. Hydrogen loading is often used for enhancing the uv photosensitivity of the core, however, the resultant gratings show significant aging effect. In the present study, high temperature thermal annealing process has been investigated to obtain thermal gratings and process parameters are deduced.

Purely Phase-Sampled Fiber Bragg Gratings with uniform bandwidth for Broadband Dispersion and Dispersion Slope Compensation (균일한 대역폭을 갖는 광대역 분산 및 분산 경사 보상을 위한 순 위상 샘플링 광섬유 Bragg 격자)

  • Lee Hojoon
    • Korean Journal of Optics and Photonics
    • /
    • v.15 no.6
    • /
    • pp.485-489
    • /
    • 2004
  • We demonstrated numerically that both the chromatic dispersion and the dispersion slope could be compensated by using purely phase-sampled superstructure fiber Bragg gratings provided with chirp of coupling coefficient along the wavelength axis. Also, we propose a purely phase-sampled Bragg grating for dispersion and dispersion slope compensation by introducing a chirp in coupling coefficient and sampling function. The bandwidth of all reflected channels can be equalized.

Polymer-waveguide Bragg-grating Devices Fabricated Using Phase-mask Lithography

  • Park, Tae-Hyun;Kim, Sung-Moon;Oh, Min-Cheol
    • Current Optics and Photonics
    • /
    • v.3 no.5
    • /
    • pp.401-407
    • /
    • 2019
  • Polymeric optical waveguide devices with Bragg gratings have been investigated, for implementing tunable lasers and wavelength filters used in wavelength-division-multiplexed optical communication systems. Owing to the excellent thermo-optic effect of these polymers, wavelength tuning is possible over a wide range, which is difficult to achieve using other optical materials. In this study the phase-mask technology, which has advantages over the conventional interferometeric method, was introduced to facilitate the fabrication of Bragg gratings in polymeric optical waveguide devices. An optical setup capable of fabricating multiple Bragg gratings simultaneously on a 4-inch silicon wafer was constructed, using a 442-nm laser and phase mask. During fabrication, some of the diffracted light in the phase mask was totally reflected inside the mask, which affected the quality of the Bragg grating adversely, so experiments were conducted to solve this issue. To verify grating uniformity, two types of wavelength-filtering devices were fabricated using the phase-mask lithography, and their reflection and transmission spectra were measured. From the results, we confirmed that the phase-mask method provides good uniformity, and may be applied for mass production of polymer Bragg-grating waveguide devices.

Fiber Brags Grating Fabrication using Interferometer with Phase Mask (위상 마스크 간섭계를 이용한 광섬유 격자 제작)

  • 유계준;이호준;김병규;김선관;이원준
    • Proceedings of the Optical Society of Korea Conference
    • /
    • 2001.02a
    • /
    • pp.194-195
    • /
    • 2001
  • We fabricated fiber bragg gratings using interferometric method with Phase mask. The interferometer consisted of two plane-parallel mirrors and a phase mask perpendicular to mirrors. The Gratings were written using an Argon-ion laser. The experimental setup could change Bragg wavelength given by the phase mask. (omitted)

  • PDF

Effects of the UV beam parameters on the fiber Bragg gratings fabricated (UV beam parameter가 광섬유 격자 형성에 미치는 영향)

  • Lim, J.H.;Cho, S.Y.;Kim, S.Y.;Park, K.N.;Lee, J.H.;Park, P.O.;Song, J.T.;Lee, K.S.;Jeon, C.O.
    • Proceedings of the KIEE Conference
    • /
    • 1997.11a
    • /
    • pp.665-668
    • /
    • 1997
  • We fabricated a number of optical fiber Bragg gratings by varying the UV beam parameters such as the laser energy density, pulse repetition rate and exposing time. The reflectance and the Bragg wavelength shift of the fiber Bragg gratings formed with a KrF excimer laser in real time depend strongly on the UV beam parameters. The index changes in the gratings during the exposing time are well fitted to the well known equations.

  • PDF

Radiation Effects on Fiber Bragg Gratings Written by Femtosecond Laser (펨토초 레이저로 제작된 광섬유 브래그 격자 센서의 방사선 영향)

  • Kim, Jong-Yeol;Lee, Nam-Ho;Jung, Hyun-Kyu;Im, Don-Sun
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2015.10a
    • /
    • pp.961-963
    • /
    • 2015
  • In this study, we studied the effect of $Co^{60}$ gamma-radiation on the fiber Bragg gratings written by femtosecond UV laser in single mode optical fibers. The fiber Bragg gratings were exposed to gamma-radiation up to a dose of about 31.6 kGy at the dose rate of 106 Gy/min. According to the experimental data and analysis results, we confirmed Bragg gratings written by femtosecond laser have the excellent radiation-hardened characteristics for high radiation environments.

  • PDF

Temperature-Compensative Displacement Sensor based on a Pair of Fiber Bragg Gratings Attached to a Metal Band

  • Kim, Kwang Taek;Kim, Dong Geun
    • Journal of Sensor Science and Technology
    • /
    • v.27 no.2
    • /
    • pp.82-85
    • /
    • 2018
  • This paper proposes a new temperature-compensative displacement sensor with a pair of fiber Bragg gratings (FBG) attached to the inner and outer surfaces of an elastic metal band. The sensor can be also used as a temperature sensor with high sensitivity. The FBG pair shifted Bragg wavelengths in the same direction according to changes in the temperature. However, because the pressure of the metal band shifted a pair of Bragg wavelengths in the opposite direction, the displacement sensor could compensate for the effect of the temperature change in the proposed FBG pair. Results of the experiments showed that the two FBG displacement sensors responded linearly and symmetrically with respect to the displacement, and the displacement could be obtained using the difference between the two Bragg wavelengths.

Chip-scale Temperature-compensated Superstructured Waveguide Bragg Grating Based Multiparametric Sensor

  • Vishwaraj, Naik Parrikar;Nataraj, Chandrika Thondagere;Jagannath, Ravi Prasad Kogravalli;Gurusiddappa, Prashanth;Talabattula, Srinivas
    • Current Optics and Photonics
    • /
    • v.4 no.4
    • /
    • pp.293-301
    • /
    • 2020
  • In this paper we propose and theoretically analyze a monolithic multiparametric sensor consisting of a superstructure of surface-relief waveguide Bragg gratings (WBGs), a micro-machined diaphragm, and a cantilever beam. Diaphragms of two different configurations, namely circular and square, are designed and analyzed separately for pressure measurement. The square diaphragm is then selected for further study, since it shows relatively higher sensitivity compared to the circular one, as it incurs more induced stress when any pressure is applied. The cantilever beam with a proof mass is designed to enhance the sensitivity for acceleration measurement. A unique mathematical method using coupled-mode theory and the transfer-matrix method is developed to design and analyze the shift in the Bragg wavelength of the superstructure configuration of the gratings, due to simultaneously applied pressure and acceleration. The effect of temperature on the wavelength shift is compensated by introducing another Bragg grating in the superstructure configuration. The measured sensitivities for pressure and acceleration are found to be 0.21 pm/Pa and 6.49 nm/g respectively.