• Title/Summary/Keyword: Bradkynin

Search Result 2, Processing Time 0.016 seconds

Theoretical Structure Prediction of Bradykinin Receptor B2 Using Comparative Modeling

  • Nagarajan, Santhosh Kumar;Madhavan, Thirumurthy
    • Journal of Integrative Natural Science
    • /
    • v.9 no.4
    • /
    • pp.234-240
    • /
    • 2016
  • Bradykinin receptor B2, a GPCR protein, binds with the inflammatory mediator hormone bradkynin. It plays an important role in cross-talk between the renin-angiotensin system (RAS) and the kinin-kallikrein system (KKS). Also, it is involved in many processes including vasodilation, edema, smooth muscle spasm and pain fiber stimulation. Hence, studuying the structural features of the receptor becomes important. But the unavailability of the three dimensional structure of the protein makes the analysis difficult. Hence we have performed the homology modelling of Bradykinin receptor B2 with 5 different templates. 25 different homology models were constructed. Two best models were selected based on the model validation. The developed models could be helpful in analysing the structural features of Bradykinin receptor B2 and in pathophysiology of various disorders related to them.

Protein-protein Interaction Analysis of Bradykinin Receptor B2 with Bradykinin and Kallidin

  • Nagarajan, Santhosh Kumar;Madhavan, Thirumurthy
    • Journal of Integrative Natural Science
    • /
    • v.10 no.2
    • /
    • pp.74-77
    • /
    • 2017
  • Bradykinin receptor B2 (B2R) is a GPCR protein which binds with the inflammatory mediator hormone bradkynin. Kallidin, a decapeptide, also signals through this receptor. B2R is crucial in the cross-talk between renin-angiotensin system (RAS) and the kinin-kallikrein system (KKS) and in many processes including vasodilation, edema, smooth muscle spasm and pain fiber stimulation. Thus the structural study of the receptor becomes important. We have predicted the peptide structures of Bradykinin and Kallidin from their amino acid sequences and the structures were docked with the receptor structure. The results obtained from protein-protein docking could be helpful in studying the B2R structural features and in the pathophysiology in various diseases related to it.