• Title/Summary/Keyword: Braces

Search Result 276, Processing Time 0.019 seconds

Experimental Evaluation for Structural Performance of Diagrid BRB Structural System (Diagrid BRB의 실험적 구조성능 평가)

  • Lee, Jong-Hyock;Ju, Young-Kyu;Kim, Young-Ju;Kim, Sang-Dae
    • Journal of Korean Society of Steel Construction
    • /
    • v.22 no.3
    • /
    • pp.261-269
    • /
    • 2010
  • It is now possible to design buildings in various forms using a diagrid structural system, which is the one of the most useful structural systems. It is difficult to design and construct the connections, however, and the bucklings in braces weaken the seismic performance of structures. In this study, the initial stiffness, ductility, and energy-dissipated capacity of a diagrid and a diagrid BRB were evaluated via frame tests. The results of the cycling load tests showed that the diagrid BRB had better initial stiffness and ductility, and dissipated extra energy after the BRBs were yielded.

Response modification factor of the frames braced with reduced yielding segment BRB

  • Fanaie, Nader;Dizaj, Ebrahim Afsar
    • Structural Engineering and Mechanics
    • /
    • v.50 no.1
    • /
    • pp.1-17
    • /
    • 2014
  • In this paper, overstrength, ductility and response modification factors are calculated for frames braced with a different type of buckling restrained braces, called reduced yielding segment BRB (Buckling Restrained Brace) in which the length of its yielding part is reduced and placed in one end of the brace element in comparison with conventional BRBs. Forthermore, these factors are calculated for ordinary BRBF and the results are compared. In this regard incremental dynamic analysis (IDA) method is used for studying 17 records of the most known earthquakes happened in the world. To do that, the considered buildings have different stories and two bracing configurations: diagonal and inverted V chevron, the most ordinary configurations of BRBFs. Static pushover analysis, nonlinear incremental dynamic analysis and linear dynamic analysis have been performed using OpenSees software. Considering the results, it can be seen that, overstrength, ductility and response modification factors of this type of BRBF(Buckling Restrained Braced Frame) is greater than those of conventional types and it shows better seismic performance and also eliminates some of conventional BRBF's disadvantages such as low post-yield stiffness.

A Fundamental Study of Performance Based Seismic Design on the Large Span Structures: The Characteristics of Elasto-Plastic Earthquake Responses of a Steel Frame with Membrane Roof (공간구조물의 성능기초 내진설계에 관한 기초연구: 강구조 골조막 구조의 탄소성 지진응답특성)

  • Nakazawa, Shoji;Cheong, Myung-Chae;Kato, Shi;Yoshino, Tatsuya;Oda, Kenshi
    • Journal of Korean Association for Spatial Structures
    • /
    • v.7 no.2 s.24
    • /
    • pp.35-44
    • /
    • 2007
  • The characteristics of elasto-plastic responses of a gymnasium building which is a steel braced frame with membrane roof is discussed as a basic research on the performance based seismic design of large span structures, in this paper. Under the strong earthquake motions, the formation of plastic hinges on braces attached by the bottom frame make reduce down the stresses and displacements of upper structures, and vertical acceleration of the membrane is tend to increase but maximum response of strain and corresponding stresses are tend to be reduced.

  • PDF

The Structural Design of Tianjin Goldin Finance 117 Tower

  • Liu, Peng;Ho, Goman;Lee, Alexis;Yin, Chao;Lee, Kevin;Liu, Guang-lei;Huang, Xiao-yun
    • International Journal of High-Rise Buildings
    • /
    • v.1 no.4
    • /
    • pp.271-281
    • /
    • 2012
  • Tianjin Goldin Finance 117 tower has an architectural height of 597 m, total of 117 stories, and the coronation of having the highest structural roof of all the buildings under construction in China. Structural height-width ratio is approximately 9.5, exceeding the existing regulation code significantly. In order to satisfy earthquake and wind-resisting requirements, a structure consisting of a perimeter frame composed of mega composite columns, mega braces and transfer trusses and reinforced concrete core containing composite steel plate wall is adopted. Complemented by some of the new requirements from the latest Chinese building seismic design codes, design of the super high-rise building in high-intensity seismic area exhibits a number of new features and solutions to professional requirements in response spectrum selection, overall stiffness control, material and component type selection, seismic performance based design, mega-column design, anti-collapse and stability analysis as well as elastic-plastic time-history analysis. Furthermore, under the prerequisite of economic viability and a series of technical requirements prescribed by the expert review panel for high-rise buildings exceeding code limits, the design manages to overcome various structural challenges and realizes the intentions of the architect and the client.

Response Modification Factors of Inverted V-type Ordinary Concentrically Braced Frames (역V형 보통가새골조의 반응수정계수)

  • Kim, Jin-Koo;Nam, Kwang-Hee
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.8 no.3
    • /
    • pp.53-62
    • /
    • 2004
  • In this paper the overstrength factors, ductility factors, and response modification factors of ordinary concentric braced frames designed in accordance with a current seismic design code are determined by performing pushover analysis. According to the analysis results, the overstrength and the response modification factors turn out to be larger than the values regulated in the codes in most model structures. However if the braces are reinforced by BRB or zipper columns, the overstrength factors and response modification factors turn out to increase significantly.

Modelling and classification of tubular joint rigidity and its effect on the global response of CHS lattice girders

  • Wang, Wei;Chen, Yiyi
    • Structural Engineering and Mechanics
    • /
    • v.21 no.6
    • /
    • pp.677-698
    • /
    • 2005
  • In engineering practice, tubular connections are usually assumed pinned or rigid. Recent research showed that tubular joints may exhibit non-rigid behavior under axial or bending loads. This paper is concerned with establishing a new classification for tubular joints and investigating the effect of joint rigidity on the global behavior of CHS (Circular Hollow Section) lattice girders. Parametric formulae for predicting tubular joint rigidities are proposed, which are based on the finite element analyses through systematic variation of the main geometric parameters. Comparison with test results proves the reliability of these formulae. By considering the deformation patterns of respective parts of Vierendeel lattice girders, the boundary between rigid and semirigid tubular connections is built in terms of joint bending rigidity. In order to include characteristics of joint rigidity in the global structural analysis, a type of semirigid element which can effectively reflect the interaction of two braces in K joints is introduced and validated. The numerical example of a Warren lattice girder with different joint models shows the great effect of tubular joint rigidities on the internal forces, deformation and secondary stresses.

An analytical model for shear links in eccentrically braced frames

  • Ashtari, Amir;Erfani, Saeed
    • Steel and Composite Structures
    • /
    • v.22 no.3
    • /
    • pp.627-645
    • /
    • 2016
  • When an eccentrically braced frame (EBF) is subjected to severe earthquakes, the links experience inelastic deformations while beams outside of the link, braces and columns are designed to remain elastic. To perform reliable inelastic analyses of EBFs sufficient analytical model which can accurately predict the inelastic performance of the links is needed. It is said in the literature that available analytical models for shear links generally predict very well the maximum shear forces and deformations from experiments on shear links, but may underestimate the intermediary values. In this study it is shown that available analytical models do not predict very well the maximum shear forces and deformations too. In this study an analytical model which can accurately predict both maximum and intermediary values of shear force and deformation is proposed. The model parameters are established based on test results from several experiments on shear links. Comparison of available test results with the hysteresis curves obtained using the proposed analytical model established the accuracy of the model. The proposed model is recommended to be used to perform inelastic analyses of EBFs.

Frequency variation in construction stages and model validation for steel buildings

  • Aras, Fuat
    • Steel and Composite Structures
    • /
    • v.22 no.3
    • /
    • pp.647-662
    • /
    • 2016
  • This study aims to monitor the variation of modal frequencies of steel buildings during their construction sequence. In this respect, construction of a steel building is followed by vibration based measurements. The monitored building is a three-story educational building within a building group whose structural system consists of steel moment resisting steel frames and eccentric braces. Five different acceleration measurements in two perpendicular directions are taken on five different construction stages, starting from the erection of the columns and beams ending with the completion of the construction. The recorded measurements are transferred into frequency domain and the dominant frequencies for each case have been determined. The change in the dominant frequencies is evaluated with the existing construction stages and performed constructional works between the stages. The last measurement, performed on the building in service, revealed the first two dominant frequencies as mutual in X and Y direction, showing that these dynamic modes are torsional modes. This result is investigated by numerical analysis performed with finite element model of the building constructed for design purpose. Lower frequencies and different mode shapes are determined from numerical analysis. The reason of lower frequencies is discussed and the vibration survey is extended to determine the effects of an adjacent building. The results showed that the building is in strong relation with an adjoining building in spite of a designed construction joint.

Experimental performance of Y-shaped eccentrically braced frames fabricated with high strength steel

  • Lian, Ming;Su, Mingzhou;Guo, Yan
    • Steel and Composite Structures
    • /
    • v.24 no.4
    • /
    • pp.441-453
    • /
    • 2017
  • In Y-shaped eccentrically braced frame fabricated with high strength steel (Y-HSS-EBF), link uses conventional steel while other structural members use high strength steel. Cyclic test for a 1:2 length scaled one-bay and one-story Y-HSS-EBF specimen and shake table test for a 1:2 length scaled three-story Y-HSS-EBF specimen were carried out to research the seismic performance of Y-HSS-EBF. These include the failure mode, load-bearing capacity, ductility, energy dissipation capacity, dynamic properties, acceleration responses, displacement responses, and dynamic strain responses. The test results indicated that the one-bay and one-story Y-HSS-EBF specimen had good load-bearing capacity and ductility capacity. The three-story specimen cumulative structural damage and deformation increased, while its stiffness decreased. There was no plastic deformation observed in the braces, beams, or columns in the three-story Y-HSS-EBF specimen, and there was no danger of collapse during the seismic loads. The designed shear link dissipated the energy via shear deformation during the seismic loads. When the specimen was fractured, the maximum link plastic rotation angle was higher than 0.08 rad for the shear link in AISC341-10. The Y-HSS-EBF is a safe dual system with reliable hysteretic behaviors and seismic performance.

Development of Command Signal Generating Method for Assistive Wearable Robot of the Human Upper Extremity (상지 근력지원용 웨어러블 로봇을 위한 명령신호 생성 기법 개발)

  • Lee, Hee-Don;Yu, Seung-Nam;Lee, Seung-Hoon;Jang, Jae-Ho;Han, Jung-Soo;Han, Chang-Soo
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.15 no.2
    • /
    • pp.176-183
    • /
    • 2009
  • This paper proposes command signal generating method for a wearable robot using the force as the input signal. The basic concept of this system pursues the combination of the natural and sophisticated intelligence of human with the powerful motion capability of the robot. We define a task for the command signal generation to operate with the human body simultaneously, paying attention to comfort and ease of wear. In this study, we suggest a basic exoskeleton experimental system to evaluate a HRI(Human Robot Interface), selecting interfaces of arm braces on both wrists and a weight harness on the torso to connect the robot and human. We develop the HRI to provide a command for the robot motion. It connects between the human and the robot with the multi-axis load-cell, and it measures the relative force between the human and the robot. The control system calculates the trajectory of end-effector using this force signal. In this paper, we verify the performance of proposed system through the motion of elbow E/F(Extension/Flexion), the shoulder E/F and the shoulder Ab/Ad (Abduction/Adduction).