• Title/Summary/Keyword: Box-Cox 멱 변환

Search Result 3, Processing Time 0.009 seconds

Shift-Power Transformation (이동-멱변환에 관한 연구)

  • Cho Ki-Jong;Jeong Seok-Oh;Shin Key-Il
    • The Korean Journal of Applied Statistics
    • /
    • v.19 no.2
    • /
    • pp.283-290
    • /
    • 2006
  • Generally speaking, power transformations such as Box-Cox transformation(1964) is applied for variance stabilization and symmetry. But, when the distribution of the original data has a large mean with a small variance or the coefficient of variation is very small, they don't work at all. This paper propose a simple method to introduce a shift parameter before applying power transformations and showed the numerical evidence by Monte Carlo simulation and a real data analysis.

공간통계모형에서 Box-Cox 변환에 대한 영향력 분석연구

  • Lee, Jin-Hui;Sin, Gi-Il
    • Proceedings of the Korean Statistical Society Conference
    • /
    • 2002.05a
    • /
    • pp.153-158
    • /
    • 2002
  • 시계열 자료의 분석에서 분산이 일정하지 않을 경우 이에 대한 해결방법으로 변환이 사용된다. 그러나 이러한 변환은 분산을 안정화시킴으로서 추정 및 검정에 타당성을 주는 반면 새로운 편의를 생성하거나(Granger & Newbold,1976) 모형을 복잡하게 만듦으로써 해석의 어려움도 수반한다. 신과 강(2001)은 평균이 크고 그에 비해 분산이 작을 경우 Box-Cox 멱 변환이 시계열 자료에 대하여 별 영향을 미치지 않음을 연구하였다. 본 논문은 이에 대한 확장으로 공간자료에서도 이 이론이 성립함을 밝혔다.

  • PDF

On Asymmeticity for Power Transformed TARCH Model

  • Kim, Sahm-Yong;Lee, Sung-Duck;Jeong, Ae-Ran
    • Journal of the Korean Data and Information Science Society
    • /
    • v.16 no.2
    • /
    • pp.271-281
    • /
    • 2005
  • Zokian(1993) and Li and Li(1996) developed TARCH(Threshold ARCH) model, considering the asymmetries in volatility. The models are based on Engle(1982)'s ARCH model and Bollerslev(1986)'s GARCH model. However, two TARCH models can be expressed a common model through Box Cox Power transformation, which was used by Higgins and Bera(1992) for developing NARCH(nonlinear ARCH) model. This article shows the PTARCH(Power transformation TARCH) model is necessary in some condition, and it checks the fact that PTARCH model has better performance comparing estimates and RMSE(Root Mean Square Error) with those of Zakoian's TARCH model and Li and Li's TARCH model. PTARCH model would give contribution in asymmetric study as well as heteroscedastic study.

  • PDF