• 제목/요약/키워드: Box-Column

검색결과 126건 처리시간 0.01초

단주교각 강박스교량의 거동계수 (Behavior Factor of a Steel Box Bridge with Single Column Piers)

  • 박준봉;김종수;국승규
    • 한국지진공학회:학술대회논문집
    • /
    • 한국지진공학회 2002년도 춘계 학술발표회 논문집
    • /
    • pp.228-235
    • /
    • 2002
  • As the response spectrum method generally used in the earthquake resistant design is a linear method, the nonlinear behavior of a structure is to be reflected with a specific factor. Such factors are provided in the "Design Criteria for Roadwaybridges"as response modification factors and in the Eurocode 8, Part 2 as behavior factors. In this study a 5-span steel box bridge with single column piers is selected and the behavior factor is determined. The linear time history analyses are carried out with a simple linear model, where the nonlinear behavior of piers leading to the ductile failure mechanism is considered as predetermined characteristic curves.

  • PDF

중심 편석층이 있는 극후판 박스-칼럼의 대입열 코너이음 용접시 그루브 형상의 영향 (Effect of the Groove Shape of Ultra Thick Box-Column with Center Segregation under High Heat Input for Corner Welding)

  • 최원규;이종봉;권영두;구남서
    • 한국해양공학회지
    • /
    • 제16권2호
    • /
    • pp.72-79
    • /
    • 2002
  • In this study, time-dependent distributions of temperature and stresses, in the box-column welded from ultra thick plates with center segregation, has been analyzed by the commercial finite element package SYSWELD+, for several types and angles of groove. The major points of investigation are the optimum type and angle of groove that minimize weld stress specially at the center segregation, as well as temperature distribution, residual stresses and changes in the mechanical properties. The results can be summarized as follows; 1) Generally the thermal cycle at the root of groove exhibits relatively rapid cooling pattern, however, most of the other part weldment have a slow cooling pattern in all groove types. 2) Most of the micro-structures of weldment are composed of ferrite and pearlite, meanwhile we could find martensite and bainite locally a the root of the groove. 3) Optimum groove type for high heat input welding of box-column corner is a double groove type, and the optimum angle for the groove is 30~$45^{\circ}$ that minimize deformation and weld stress at the center segregation.

Development of new inner diaphragms for a H-beam and composite box column joint

  • Khan, Mahbub;Uy, Brian;Kim, Jin W
    • Steel and Composite Structures
    • /
    • 제42권3호
    • /
    • pp.363-373
    • /
    • 2022
  • This paper presents an experimental and a numerical investigation of a H-beam - composite box column joint fabricated with two new inner diaphragms and a continuous inner diaphragm. The main objective of the current research project is to investigate the structural performance of the newly developed inner diaphragms under a cyclic loading protocol. Hysteretic behaviour of the composite joints is analysed to investigate the structural performance of the new and continuous inner diaphragms. This paper compares the result of the finite element (FE) models with the new and continuous inner diaphragms against their counterpart experimental results. To produce a design criterion for the newly developed inner diaphragms, yielding or failure area of the inner diaphragms under tensile stress is analysed from the FE results.

강재 플레이트 유한요소해석을 이용한 잔교 상부의 풀 박스 부재의 선정 (Design of Pull Box Members on the Landing Pier Using Finite Element Analysis of a Steel Plate)

  • 김성원;홍혜민;한택희;서승남
    • 한국연안방재학회지
    • /
    • 제4권3호
    • /
    • pp.111-118
    • /
    • 2017
  • In this study, pull box members were designed by finite element analysis of a steel plate covering a pull box to secure its safety on the landing pier dedicated to the large research survey ship. It was assumed that the maximum load is due to the 250 tonf class crane used for unloading work when the working environment in the upper part of the landing pier was considered. The safety of the pull box was evaluated by the comparison between the yield strength of the steel plate and the result of stress analysis on the steel plate due to the crane load. It was found that the stress at the plate from the crane load exceeded the yield strength of the steel(205MPa) when the upper part of the pull box was protected by a $1950{\times}1950mm$ steel plate cover. In order to compensate for this, a concrete filled steel tube(CFT) column with a diameter of 150 mm and a steel thickness of 10 mm was reinforced at the center of the plate, and the finite element analysis was carried out. However, the maximum stress at the steel plate was higher than the yield strength of the steel in some load cases so that it was tried to find appropriate thickness of the steel plate and diameter of the CFT columns. Finally, the analysis results showed that the safety of the pull box was secured when the thickness of the steel plate and the diameter of the CFT column were increased to 30mm and 180mm, respectively.

고강도 CFT용 콘크리트의 현장적용성 평가 및 장기거동 예측 (A Evaluation on the Field Application of High Strength Concrete for CFT Column)

  • 박제영;정경수;김우재;이종인;김용민
    • 콘크리트학회논문집
    • /
    • 제26권6호
    • /
    • pp.707-714
    • /
    • 2014
  • 콘크리트 충전강관(CFT)은 강관의 내부에 콘크리트로 채워진 기둥이다. CFT는 강재와 콘크리트로 구성되며, 강재는 콘크리트를 내부에서 구속시켰고, 내부 콘크리트는 기둥의 압축하중을 감당한다. 본 실험에서 73~100MPa급 고강도 콘크리트에 관해 유동성실험, 압축강도실험, 압송압력실험을 실시하였으며, CFT용 고강도 콘크리트의 물리적 성질을 알아보기 위해 슬럼프, 슬럼프 플로우, 공기량, U-box시험, O-Lot시험, L-flow시험이 진행되었다. 이러한 연구의 결과를 바탕으로 Mock-up테스트에서 콘크리트 충전성 시험, 수화열 측정 시험, 응력계측 시험을 수행하였다. 현장적용은 상암동 및 서강대 현장의 두 곳에 각각 ${\Box}-566{\times}566{\times}10$, ${\Box}-400{\times}400{\times}25$의 대상기둥을 선정하여 현장계측을 진행하였다. CFT기둥의 장기거동 예측에 관하여 설계하중에 대해 콘크리트의 탄성변형과 건조수축, 크리프 수축을 고려한 ACI 209 재료모델을 사용한 결과는 계측결과와 거의 일치하였다.

비충전 및 충전 원형기둥-상자형보 접합부의 응력분포특성 (Stress Distribution Behavior Hollow and Felled Circular Column Column-Box Beam Connections)

  • 황원섭;박용명;최원경;김영필
    • 한국강구조학회 논문집
    • /
    • 제14권3호
    • /
    • pp.433-441
    • /
    • 2002
  • 본 연구에서는 원형기둥과 상자형보로 이루어진 접합부의 응력분포에 관하여 검토하였다. 접합각도를 변수로 하는 총 12개의 비충전 및 충전 원형기둥-상자형보 접합부에 대한 실험을 수행하였다. 접합부의 수직 및 전단응력 분포특성을 파악하기 위해 우선 기존 설계식에서 주로 사용하고 있는 환산깊이 dc'및 추가적의 환산깊이를 도입하여 검토하였고 이를 적용하여 계산한 응력값을 실험값과 비교.검토하였다. 그 결과 비충전 및 충전접합부의 수직 및 전단응력 실험값은 설계식에 의한 값과 많은 차이점을 나타냄을 알 수 있었고, 환산깊이 dc'은 접합각도가 커질수록 급격히 감소하여 설게식에 적용하기에는 한계가 있음을 확인하였다. 또한 충전 접합부가 비충전 접합부에 비해 작은 응력값을 나타냈으며 충전접합부의 실험값을 비충전 접합부의 응력산정 방법을 준용하는 현행 설계식의 값과 비교. 분석하였다.

축방향 하중을 받는 강재 상자단면 보-기둥 접합부의 강도평가 (Strength Evaluation of Steel Box Beam-to-Column Connections with Axial Load)

  • 황원섭;박문수;김영필
    • 한국강구조학회 논문집
    • /
    • 제19권1호
    • /
    • pp.117-127
    • /
    • 2007
  • 이 연구에서는 기둥에 축방향 하중을 받고 있는 강재 상자단면 접합부의 강도를 이론적 해석적 검토를 통하여 평가하였다. 2층 교각구조에서는 기둥에 작용하고 있는 축방향 하중의 영향으로 T형 접합부 강도가 저하되게 된다. 이러한 현상을 검토하기 위해 비선형 유한요소해석을 수행하였고, 실험결과와의 비교를 통하여 유한요소 해석프로그램 및 해석방법의 타당성을 검증하였다. 강재라멘교각 접합부의 설계변수 중 패널존의 폭-두께비 파라메타와 플랜지와 복부판의 단면적비 및 기둥에 작용하는 축방향 하중의 영향을 비선형 유한요소해석을 통하여 검토하였다. 또한 이 연구에서는 축방향 하중의 증가에 따른 T형 상자단면 접합부의 응력분포를 이용하여 이론적인 강도평가식을 유도하였다. 또한 1층 교각 구조의 상자단면 접합부 강도특성과 비교하였다. 결국, 패널존의 폭-두께비 파라메타와 단면적비의 영향을 고려하여 T형 접합부의 강도평가식을 제안하였다.

Ultimate capacity of welded box section columns with slender plate elements

  • Shen, Hong-Xia
    • Steel and Composite Structures
    • /
    • 제13권1호
    • /
    • pp.15-33
    • /
    • 2012
  • For an axially loaded box-shaped member, the width-to-thickness ratio of the plate elements preferably should not be greater than 40 for Q235 steel grades in accordance with the Chinese code GB50017-2003. However, in practical engineering the plate width-to-thickness ratio is up to 120, much more than the limiting value. In this paper, a 3D nonlinear finite element model is developed that accounts for both geometrical imperfections and residual stresses and the ultimate capacity of welded built-up box columns, with larger width-to-thickness ratios of 60, 70, 80, and 100, is simulated. At the same time, the interaction buckling strength of these members is determined using the effective width method recommended in the Chinese code GB50018-2002, Eurocode 3 EN1993-1 and American standard ANSI/AISC 360-10 and the direct strength method developed in recent years. The studies show that the finite element model proposed can simulate the behavior of nonlinear buckling of axially loaded box-shaped members very well. The width-to-thickness ratio of the plate elements in welded box section columns can be enlarged up to 100 for Q235 steel grades. Good agreements are observed between the results obtained from the FEM and direct strength method. The modified direct strength method provides a better estimation of the column strength compared to the direct strength method over the full range of plate width-to-thickness ratio. The Chinese code and Eurocode 3 are overly conservative prediction of column capacity while the American standard provides a better prediction and is slightly conservative for b/t = 60. Therefore, it is suggested that the modified direct strength method should be adopted when revising the Chinese code.

산화전분 코팅에 의한 골판지 상자의 물성 변화 (Effect of Coating of Liner Components with Oxidized Starch on Properties of Corrugated Box)

  • 안병국;안원영
    • 펄프종이기술
    • /
    • 제31권3호
    • /
    • pp.47-53
    • /
    • 1999
  • The effect of coating of liner components with oxidized starch on the properties of corrugated box was examined . Coating was carried out on liner components of B flute, single-wall corrugated board(SK180/S120/K200) , and corrugated box was made from the treated corrugated board. Box was made in a regular slotted container (RSC) style, and box compression strength was determined in the direction of top-to-bottom compression. The compression strength of box coated on outside liner component showed 15.4% improvement for 1.58g㎡ coating. On the other hand, the strength of box coated on outside liner component showed only 1.45% improvement for 1.41g/㎡ coating and 3.46% improvement for 2.32g/㎡ coating. Coating on inside liner component with oxidized starch at low coating weight more significantly improved box compression strength than coating on outside liner component, and the improvement was marked at the coating weight of 1.5-2.5g/㎡. In estimating top-to-bottom box compression strength, the experimental values were closer to the calculated values from McKee's equation suing edgewise compression strength of the combined board measured by column crush test than those from Kellicutt's equation using compression strength of component paperboards measured by ring crush test.

  • PDF

Effects of RHS face deformation on the rigidity of beam-column connection

  • Hadianfard, M.A.;Rahnema, H.
    • Steel and Composite Structures
    • /
    • 제10권6호
    • /
    • pp.489-500
    • /
    • 2010
  • The rigid connections of I-beams to Rectangular Hollow Sections (RHS) in steel structures usually behave as semi-rigid connection. This behavior is directly related to the column face deformation. The deformation in the wall of RHS column in the connection zone causes a relative rotation between beam end and column axis, which consequently reduces the rigidity of beam-column connection. In the present paper, the percentages of connection rigidity reduction for serviceability conditions are evaluated by using the finite element analysis. Such percentages for RHS columns without internal stiffeners are considerable, and can be calculated from presented graphs.